EXPLORING PRIMARY SCHOOL TEACHERS' PERCEIVED BEHAVIOURAL CONTROL IN IMPLEMENTING STEAM EDUCATION
DOI:
https://doi.org/10.18173/2354-1075.2025-0014Keywords:
STEAM education, integrated education model, primary school teachers, perceived behavioural controlAbstract
This study explores primary school teachers’ perception of behavioural control in designing and organizing STEAM educational activities, with data collected from two provinces, Tuyen Quang and Hai Phong. The findings reveal a strong correlation (r = 0.749) between the designing and organizing components, underscoring the significance of their coordination in ensuring the effective implementation of STEAM education. The study highlights several advantages experienced by teachers, including the effective use of recycled materials and adequate physical resources, which facilitate innovative and efficient learning activities. However, teachers also encounter notable challenges such as time management and limitations in interdisciplinary pedagogical methods. Concerns about maintaining curriculum progress and lacking professional support were also frequently raised. These challenges align with findings from international studies, emphasizing the importance of training programs and experience-sharing opportunities to enhance teachers’ competencies.
Downloads
References
[1] Sousa DA & Pilecki T, (2018). From STEM to STEAM brain-compatible strategies and lessons that integrate the arts (2nd ed.). SAGE Publications, p. 265.
[2] Thủ tướng Chính phủ, (2017). Chỉ thị số 16/CT-TTg về việc Tăng cường năng lực tiếp cận cuộc cách mạng công nghiệp lần thứ 4, Hà Nội.
[3] Thủ tướng Chính phủ, (2022). Đề án 146: Nâng cao nhận thức, phổ cập kĩ năng và phát triển nguồn nhân lực chuyển đổi số quốc gia đến năm 2025, định hướng đến năm 2030, Hà Nội.
[4] Bộ Giáo dục và Đào tạo, (2021). Công văn 2345/BGDĐT - GHTH về việc Hướng dẫn xây dựng kế hoạch giáo dục của nhà trường cấp Tiểu học, Hà Nội.
[5] Bộ Giáo dục và Đào tạo, (2023). Công văn 909/BGDĐT-GDTH về việc Hướng dẫn tổ chức hoạt động giáo dục STEM ở Tiểu học, Hà Nội.
[6] PD Linh, (2022). Vai trò của nghệ thuật trong phương pháp giáo dục STEAM. Tạp chí Khoa học Đại học Đồng Tháp, 11(3), 38-46. DOI: 10.52714/dthu.11.3.2022.950.
[7] Bequette JW & Bequette MB, (2012). A place for art and design education in the STEM conversation. Art Education, 65(2), 40-47. DOI: 10.1080/00043125.2012.11519167.
[8] Harris A & De Bruin LR, (2018). Secondary school creativity, teacher practice and STEAM education: an international study. Journal of Educational Change, 19(2), 153-179. DOI: 10.1007/s10833-017-9311-2.
[9] NV Hien, (2019). Tiếp cận dạy học STEAM trong giáo dục phổ thông hiện nay. Tạp chí Khoa học Giáo dục, 459, 1-8.
[10] TT Trung & NT Nga, (2021). Giáo dục STEAM và tiềm năng vận dụng quy trình tư duy thiết kế để triển khai giáo dục STEAM. Tạp chí Khoa học Trường Đại học Sư phạm Thành phố Hồ Chí Minh, 18(2), 310-320. DOI: 10.54607/hcmue.js.18.2.2996.
[11] NV Hung, (2021). Dạy học môn Tự nhiên và Xã hội ở Tiểu học theo tiếp cận giáo dục STEAM. Tạp chí Giáo dục, 514(Kì 2 - 11/2021), 34-39.
[12] NH Duong & TT Trung, (2024). Biện pháp bồi dưỡng năng lực công nghệ của học sinh thông qua chủ đề “STEAM Công nghệ” lớp 3. TNU Journal of Science and Technology, 229(12), 319-326. DOI: 10.34238/tnu-jst.10768.
[13] VTK Trang, (2022). Thực trạng giáo dục STEAM cho trẻ mẫu giáo 5-6 tuổi ở một số trường mầm non tại thành phố Tuyên Quang, tỉnh Tuyên Quang. Tạp chí Giáo dục, 22(8), 19-24.
[14] NTV Hoa, (2023). Tiến trình dạy học STEAM cho trẻ 5-6 tuổi theo định hướng thiết kế kĩ thuật. Tạp chí Giáo dục, 23(04), 19-24.
[15] NH Duong, (2023). Vận dụng tiến trình tư duy thiết kế vào dạy học nội dung “Làm đồ chơi” (Công nghệ 3) theo định hướng giáo dục STEAM. Tạp chí Giáo dục, 23(20), 13-17.
[16] Nguyen HD, Nguyen HN & Ta TT, (2024). Enhancing technology competence among primary students through STEAM lessons applying the design thinking process. Journal of Elementary Education, 17(2), 189-207. DOI: 10.18690/rei.2960.
[17] Bui TL, (2023). Dataset of Vietnamese preschool teachers' readiness towards implementing STEAM activities and projects. Data in Brief, 46, Article 108821. DOI: 10.1016/j.dib.2022.108821.
[18] Nguyen HD, Nguyen HN & Ta TT, (2024). Factors affecting the implementation of STEAM education among primary school teachers in various countries and Vietnamese educators: comparative analysis. Education 3-13, 1-15. DOI: 10.1080/03004279.2024.2318239.
[19] Conner M, (2020). Theory of Planned Behaviour. In: “Eklund GT & Roberts CE” (eds.), Handbook of Sport Psychology. John Wiley & Sons, Inc, p. 1-18.
[20] Opoku MP, Cuskelly M, Pedersen SJ & Rayner CS, (2021). Applying the theory of planned behaviour in assessments of teachers’ intentions towards practicing inclusive education: A Scoping Review. European Journal of Special Needs Education, 36(4), 577-592. DOI: 10.1080/08856257.2020.1779979.
[21] Gao Y, Zeng G, Wang Y, Khan AA & Wang X, (2022). Exploring educational planning, teacher beliefs, and teacher practices during the pandemic: a study of science and technology-based universities in China. Frontiers in Psychology, 13, Article 903244. DOI: 10.3389/fpsyg.2022.903244.
[22] Campbell M, (2010). An application of the theory of planned behaviour to examine the impact of classroom inclusion in elementary school students. Journal of Evidence-Based Social Work, 7(3), 235-250. DOI: 10.1080/15433710903126554.
[23] Yan Z & Sin KF, (2014). Inclusive education: teachers' intentions and behaviour analysed from the viewpoint of the theory of planned behaviour. International Journal of Inclusive Education, 18(1), 72-85. DOI: 10.1080/13603116.2012.757811.
[24] Ajzen I, (1991). The theory of planned behaviour. Organizational Behavior and Human Decision Processes, 50(2), 179-211. Available: https://reedjoe.com/wp-content/uploads/2018/04/ajzen1991_teori-perilaku-yang-direncanakan_theory-of-planned-behavior.pdf.
[25] Conner M & Sparks P, (2015). Theory of planned behaviour and the reasoned action approach. Predicting and changing health behaviour: Research and practice with social cognition models, 3, 142-188.
[26] Wu P et al., (2022). How K12 teachers’ readiness influence their intention to implement STEM education: an exploratory study based on the decomposed theory of planned behaviour. Applied Sciences, 12(23), Article 11989. DOI: 10.3390/app122311989.
[27] Ortiz-Revilla J, Ruiz-Martín Á & Greca IM, (2023). Conceptions and attitudes of pre-school and primary school teachers towards STEAM education in Spain. Education Sciences, 13(4), 377. DOI: 10.3390/educsci13040377.
[28] Nadelson LS, Seifert A, Moll AJ & Coats B, (2012). i-STEM Summer Institute: An integrated approach to teacher professional development in STEM. Journal of STEM Education: Innovation and Outreach, 13(2), 69-83. Available: http://ojs.jstem.org /index.php?journal=JSTEM.
[29] Kelley TR & Knowles JG, (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3(11), 1-11. DOI: 10.1186/s40594-016-0046-z.
[30] Akiri E, Tor HM & Dori YJ, (2021). Teaching and assessment methods: STEM teachers' perceptions and implementation. Eurasia Journal of Mathematics, Science and Technology Education, 17(6), 1-22. DOI: 10.29333/ejmste/10882.
[31] Stollman S, Meirink J, Westenberg M & Van Driel J, (2022). Teachers’ learning and sense-making processes in the context of an innovation: a two-year follow-up study. Professional Development in Education, 48(5), 718-733. DOI: 10.1080/19415257.2020.1744683.
[32] Wang X, (2013). Why students choose STEM majors: motivation, high school learning, and postsecondary context of support. American Educational Research Journal, 50(5), 1081-1121. DOI: 10.3102/0002831213488622.
[33] Creswell JW & Creswell JD, (2017). Research design: qualitative, quantitative, and mixed methods approaches. Sage Publications.
[34] Johnson H et al., (2019). Teaching assistants, computers and classroom management. Labour Economics, 58, 21-36. DOI: 10.1016/j.labeco.2019.02.006.
[35] Ta TT & Nguyen TN, (2022). A comparison of using CB-SEM and PLS-SEM to assess training effectiveness evaluation model for teacher’s online continuing professional development. Ho Chi Minh City University of Education Journal of Science, 19(2), 213-228.
[36] DeVellis RF & Thorpe CT, (2021). Scale development: theory and applications. Sage Publications.
[37] Nunnally JC & Bernstein IH, (1994). The assessment of reliability. In: Psychometric Theory (3rd ed.). McGraw-Hill, p. 248-292.
[38] Kline RB, (2016). Principles and practice of structural equation modelling (4th ed.). The Guilford Press.
[39] Gerbing DW & Anderson JC, (1988). An updated paradigm for scale development incorporating unidimensionality and its assessment. Journal of Marketing Research, 25(2), 186-192.
[40] Fornell C & Larcker DF, (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50.
[41] Henseler J, Hubona G & Ray PA, (2016). Using PLS path modelling in new technology research: updated guidelines. Industrial Management & Data Systems, 116(1), 2-20. DOI: 10.1108/IMDS-09-2015-0382.
[42] Ta TT, (2023). Proposing the process of developing a scale for students’ competency: a structural equation modelling approach. Ho Chi Minh City University of Education Journal of Science, 20(8), 1337-1352.
[43] Chin WW & Todd PA, (1995). On the use, usefulness, and ease of use of structural equation modelling in MIS research: a note of caution. MIS Quarterly, 19(2), 237-246.
[44] Voicu CD, Ampartzaki M, Dogan ZY & Kalogiannakis M, (2022). STEAM implementation in preschool and primary school education: experiences from six countries (early childhood education-innovative pedagogical approaches in the post-modern era). IntechOpen.
[45] Karpudewan M, Krishnan P, Ali MN & Yoon Fah L, (2022). Designing an instrument to measure STEM teaching practices of Malaysian teachers. Plos One, 17(5), Article 0268509. DOI: 10.1371/journal.pone.0268509.
[46] Lee MH, Hsu CY & Chang CY, (2019). Identifying Taiwanese teachers’ perceived self-efficacy for science, technology, engineering, and mathematics (STEM) knowledge. The Asia-Pacific Education Researcher, 28, 15-23. DOI: 10.1007/s40299-018-0401-6.
[47] LT Xinh & ĐĐ Thai, (2023). Thực trạng triển khai giáo dục STEM tại các trường tiểu học thành phố Thủ Đức, Thành phố Hồ Chí Minh. Tạp chí Giáo dục, 23(8), 225-229.
[48] NL Giao, (2023). Giáo dục STEM/STEAM từ lí luận đến thực tiễn áp dụng trong giáo dục phổ thông hiện nay. Social Sciences & Humanities, 6(SI1), 34-41.
[49] Kim YH & Na SI, (2022). Using structural equation modelling for understanding relationships influencing the middle school technology teacher’s attitudes toward STEAM education in Korea. International Journal of Technology and Design Education, 32(5), 2495-2526. DOI: 10.1007/s10798-021-09708-z.
[50] Webb DL & LoFaro KP, (2020). Sources of engineering teaching self‐efficacy in a STEAM methods course for elementary preservice teachers. School Science and Mathematics, 120(4), 209-219. DOI: 10.1111/ssm.12403.
[51] Trevallion D & Trevallion T, (2020). STEM: design, implement and evaluate. International Journal of Innovation, Creativity and Change, 14(8), 1-19. Available: https://www.ijicc.net/images/Vol_14/Iss_8/14801_Trevallion_2020_R1.pdf.
[52] NH Nam & TT Trung, (2024). Xây dựng thang đo xác định các yếu tố ảnh hưởng đến hành vi của giáo viên trung học cơ sở trong việc triển khai chương trình giáo dục phổ thông 2018. Tạp chí Khoa học Trường Đại học Sư phạm Hà Nội: Khoa học Giáo dục, 69(2), 3-14. DOI: 10.18173/2354-1075.2024-0018.



