THE FIRST EVALUATION OF TYROSINASE AND ELASTASE INHIBITORY ACTIVITIES OF GRAYANANE-TYPE DITERPENOIDS ISOLATED

Authors

  • Nguyen Quoc Tuan Faculty of Pharmacy, Thanh Do University, Hanoi city, Vietnam
  • Pham Thi Bich Dao Faculty of Pharmacy, Thanh Do University, Hanoi city, Vietnam
  • Nguyen Thi Hoai Ha Faculty of Pharmacy, Thanh Do University, Hanoi city, Vietnam
  • Nguyen Ngoc Linh Faculty of Pharmacy, Thanh Do University, Hanoi city, Vietnam

DOI:

https://doi.org/10.18173/2354-1059.2025-0041

Keywords:

Rhododendron brachycarpum, grayanane-type diterpenoids, tyrosinase, elastase enzymes

Abstract

From the methanol extract of the aerial parts of Rhododendron brachycarpum, five grayanane-type diterpenoids were isolated. These grayanane-type diterpenoids were elucidated by detailed analyses of NMR and MS data and identified as grayanoside B (1), rhodomoside A (2), piersformoside B (3), grayanotoxin III (4), and grayanotoxin I (5), based on comparison with previously reported spectral data. All compounds were evaluated for inhibitory activity against tyrosinase and elastase. The results revealed that the compounds 1-5 exhibited weak tyrosinase inhibitory activity, whereas compounds 1, 3, and 4 showed strong elastase inhibition, with inhibition rates of 71.78%, 71.11%, and 85.19%, respectively, at a concentration of 1mM. This study represents the first report of the anti-tyrosinase and anti-elastase activities of grayane-type diterpenoids isolated from R. brachycarpum.

References

[1] Lee SW, Kim YM, Jang SS & Chung JM, (2002). Genetic variation and structure of Rhododendron brachycarpum D. Don, a rare and endangered tree species in Korea. Silvae Genetica, 51(5), 215–219.

[2] Jang GU, Chooi US & Lee KR, (2005). Cytotoxic constituents of Rhododendron brachycarpum. Yakhak Hoeji, 49(3), 244-248.

[3] Woźniak Ł, Skąpska S & Marszałek K, (2015). Ursolic acid – A pentacyclic triterpenoid with a wide spectrum of pharmacological activities. Molecules, 20(11), 20614-20641. DOI: 10.3390/molecules201119721.

[4] Youn H & Cho JH, (1991). Isolation and structure elucidation of triterpenoidal constituents from the leaves of Rhododendron brachycarpum. Korean Journal of Pharmacognosy, 22(1), 18-21.

[5] Choi JS, Young HS, Park JC, Choi JH & Woo WS, (1987). Further study on the constituents of Rhododendron brachycarpum. Archives of Pharmacal Research, 10, 169-172. DOI: 10.1007/BF02861908.

[6] Choi JS, Young HS, Park JC, Choi JH & Woo WS, (1986). Flavonoids from the Rhododendron brachycarpum. Archives of Pharmacal Research, 9, 233-236. DOI: 10.1007/BF02856638.

[7] Ku SK, Zhou W, Lee W, Han MS, Na M & Bae JS, (2014). Anti-inflammatory effects of hyperoside in human endothelial cells and in mice. Inflammation, 38(2), 784-799. DOI: 10.1007/s10753-014-9989-8.

[8] Yoo Y, Ku SK, Zhou W, Han MS, Na M & Bae JS, (2015). Anti-septic effects of phenolic glycosides from Rhododendron brachycarpum in vitro and in vivo. Journal of Functional Foods, 16, 448-459. DOI: 10.1016/J.JFF.2015.04.053.

[9] Choi YH, Zhou W, Oh J, Choe S, Kim DW, Lee SH & Na M, (2012). Rhododendric acid A, a new ursane-type PTP1B inhibitor from the Rhododendron brachycarpum G. Don. Bioorganic & Medicinal Chemistry Letters, 22(19), 6116-6119. DOI: 10.1016/j.bmcl.2012.08.029.

[10] Li CH, Zhang JY, Zhang XY, Li SH & Gao JM, (2019). An overview of grayanane diterpenoids and their biological activities from the Ericaceae family in the last seven years. European Journal of Medicinal Chemistry, 166, 400-416. DOI: 10.1016/j.ejmech.2019.01.079.

[11] Liu S, Sun L, Zhang P & Niu C, (2024). Recent advances in grayanane diterpenes: Isolation, structural diversity, and bioactivities from Ericaceae family (2018–2024). Molecules, 29(7), 1649. DOI: 10.3390/molecules29071649.

[12] Zhou J, Liu T, Zhang H, Zheng G, Qiu Y, Deng M, Zhang C & Yao G, (2018). Anti-inflammatory grayanane diterpenoids from the leaves of Rhododendron molle. Journal of Natural Products, 81(1), 151-161. DOI: 10.1021/acs.jnatprod.7b00799.

[13] Tuan NQ, Oh J, Park HB, Ferreira D, Choe S, Lee J & Na M, (2017). A grayanotox-9(11)-ene derivative from Rhododendron brachycarpum and its structural assignment via a protocol combining NMR and DP4 plus application. Phytochemistry, 133, 45–50. DOI: 10.1016/j.phytochem.2016.10.010.

[14] Kim JH, Yoon JY, Yang SY, Choi SK, Kwon SJ, Cho IS, Jeong MH, Kim YH & Choi GS, (2017). Tyrosinase inhibitory components from Aloe vera and their antiviral activity. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 78–83. DOI: 10.1080/14756366.2016.1235568.

[15] Kim HB, Kim ES, Kim KT, Kim YM, Eom SH & (2024). In vitro study on the inhibitory effects of Korean brown, green, and red seaweed extracts on collagenase, elastase, and hyaluronidase. Fisheries and Aquatic Sciences, 27(11), 783-790. DOI: 10.47853/FAS.2024.e72.

[16] Jiratchayamaethasakul C, Ding Y, Hwang O, Im ST, Jang Y, Myung SW, Lee JM, Kim HS, Ko SC & Lee SH, (2020). In vitro screening of elastase, collagenase, hyaluronidase, and tyrosinase inhibitory and antioxidant activities of 22 halophyte plant extracts for novel cosmeceuticals. Fisheries and Aquatic Sciences, 23(1), 5. DOI: 10.1186/s41240-020-00149-8.

[17] Sakakibara J, Shirai N, Kaiya T & Nakata H, (1979). Grayanotoxin-XVIII and grayanoside B, a new A-nor-B-homo-ent-kaurene and its glucoside from Leucothoe grayana. Phytochemistry, 18(1), 135–137. DOI: 10.1016/S0031-9422(00)90931-2.

[18] Bao GH, Wang LQ, Cheng YH, Li XY & Qin GW, (2003). Diterpenoid and phenolic glycosides from the roots of Rhododendron molle. Planta Medica, 69(5), 434-439. DOI: 10.1055/s-2003-39716.

[19] Wang LQ, Chen SN, Cheng KF, Qin CS & Qin GW, (2000). Diterpene glucosides from Pieris formosa. Phytochemistry, 54(8), 847-52. DOI: 10.1016/s0031-9422(00)00054-6.

[20] Masutani T, Kawazu K, Uneyama K, Torii S & Iwasa J, (1979). Assignment of 13C-NMR spectra of Grayanotoxin-I and -III. Agricultural and Biological Chemistry, 43, 631-635.

[21] Lechtenberg M, Dierks F, Sendker J, Louis A, Schepker A & Hensel A, (2014). Extracts from Rhododendron ferrugineum do not exhibit Grayanotoxin I: An analytical survey on Grayanotoxin I within the Rhododendron. Planta Medica, 80(15), 1321-1328. DOI: 10.1055/s-0034-1383039.

[22] Tief K, Hahne M, Schmid A & Beerman F, (1996). Tyrosinase, the key enzyme in melanin synthesis, is expressed in the murine brain. European Journal of Biochemistry, 241(1), 12-6. DOI: 10.1111/j.1432-1033.1996.0012t.x.

[23] Darshan KR, Sood R & Tiwari P, (2025). Melasma management: Unveiling recent breakthroughs through literature analysis. Health Sciences Review, 14, 100213. DOI: 10.1016/j.hsr.2025.100213.

[24] Pillaiyar T, Manickam M & Namasivayam V, (2017). Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 403-425. DOI: 10.1080/14756366.2016.1256882.

[25] Álvarez-Martínez FJ, Herranz-López M, Barrajón-Catalán E & Micol V, (2025). Quantifying the modulation of elastase enzyme activity through colorimetric analysis. Journal of Visual Experimentation, 17(215). DOI: 10.3791/67331.

Downloads

Published

30-09-2025

How to Cite

Quoc Tuan, N., Thi Bich Dao, P., Thi Hoai Ha, N., & Ngoc Linh, N. (2025). THE FIRST EVALUATION OF TYROSINASE AND ELASTASE INHIBITORY ACTIVITIES OF GRAYANANE-TYPE DITERPENOIDS ISOLATED. Journal of Science Natural Science, 3(70), 108-116. https://doi.org/10.18173/2354-1059.2025-0041