STRUCTURAL CHARACTERISTICS OF DENSIFIED SILICON NITRIDE UNDER HIGH PRESSURE: A MOLECULAR DYNAMICS STUDY

Authors

  • Dinh Cong Thanh Phenikaa University Nano Institute, Phenikaa University, Hanoi city, Vietnam
  • Nguyen Thi Thao Faculty of Physics, Hanoi National University of Education, Hanoi city, Vietnam
  • Le Van Vinh School of Computing, Phenikaa University, Hanoi city, Vietnam

DOI:

https://doi.org/10.18173/2354-1059.2025-0021

Keywords:

Molecular dynamics, silicon nitride, crystal, structural properties

Abstract

We used molecular dynamics (MD) simulations to investigate the structural properties of silicon nitride (Si3N4) at high temperatures and pressures. The Si3N4 models were cooled under a pressure of 75 GPa. A phase transition occurred in the temperature range of 3950 K to 3650 K. The structural characteristics of these Si3N4 models were analysed. At 4500 K and 4000 K, the Si3N4 models exhibited a disordered structure. As the temperature decreased, the nitrogen (N) atoms predominantly adopted a face-centered cubic (fcc) structure, and a significant fraction of N atoms exhibited hexagonal close-packed (hcp) and other disordered motifs. The hcp and disordered regions were interspersed among fcc sublattices with different orientations. The local entropy distribution of the atoms broadened and shifted toward lower values with decreasing temperature.

References

[1] Sanchez-Gonzalez E, Miranda P, Guiberteau F & Pajares A, (2009). Effect of temperature on the pre-creep mechanical properties of silicon nitride. Journal of the European Ceramic Society, 29(12), 2635. https://doi.org/10.1016/j.jeurceramsoc.2009.03.011

[2] Luo C, Zhang Y & Deng T, (2021). Pressureless sintering of high performance silicon nitride ceramics at 1620 °C. Ceramics International, 47(20), 29371–29378. https://doi.org/10.1016/j.ceramint.2021.07.104

[3] Zerr A, Miehe G, Serghiou G, Schwarz M, Kroke E, Riedel R, Fueb H, Kroll P & Boehler R, (1999). Synthesis of cubic silicon nitride. Nature, 400, 340. https://doi.org/10.1038/22493

[4] Yao H, Xu Q & Tang J, (2009). Synthesis and stability of cubic silicon nitride. Advanced Materials Research, 79–82, 1467. https://doi.org/10.4028/www.scientific.net/AMR.79-82.1467

[5] Nishiyama N et al., (2019). Phase relations in silicon and germanium nitrides up to 98 GPa and 2400 °C. Journal of the American Ceramic Society, 102, 2195. https://doi.org/10.1111/jace.16063

[6] Nishiyama N et al., (2017). Transparent polycrystalline cubic silicon nitride. Scientific Reports, 7, 44755. https://doi.org/10.1038/srep44755

[7] Jiang JZ et al., (2002). Compressibility and thermal expansion of cubic silicon nitride. Physical Review B, 65, 161202. https://doi.org/10.1103/PhysRevB.65.161202

[8] Kiefer B et al., (2005). Strength, elasticity, and equation of state of the nanocrystalline cubic silicon nitride γ−Si₃N₄ to 68 GPa. Physical Review B, 72, 014102. https://doi.org/10.1103/PhysRevB.72.014102

[9] Yu BH & Chen D, (2012). Investigations of meta-stable and post-spinel silicon nitrides. Physica B, 407(24), 4660. https://doi.org/10.1016/j.physb.2012.09.025

[10] Shargh AK & Abdolrahim AK, (2019). Molecular dynamics simulation of structural changes in single crystalline silicon nitride nanomembrane. Ceramics International, 45, 23070–23077. https://doi.org/10.1016/j.ceramint.2019.07.355

[11] Nguyen TT, Nguyen TTH & Le VV, (2022). Structural and mechanical properties of cubic silicon nitride: A molecular dynamics study. VNU Journal of Science: Mathematics-Physics, 38(3), 14–23. https://doi.org/10.25073/2588-1124/vnumap.4699

[12] Le VV, Dinh TH & Nguyen TH, (2023). Microstructural and mechanical properties of cubic silicon nitride: Insights from molecular dynamics simulation. Journal of Materials Engineering and Performance, 32, 9875–9883. https://doi.org/10.1007/s11665-023-07824-6

[13] Marian CM, Gastreich M & Gale JD, (2000). Empirical two-body potential for solid silicon nitride, boron nitride, and borosilazane modifications. Physical Review B, 62, 3117. https://doi.org/10.1103/PhysRevB.62.3117

[14] Dasmahapatra A & Kroll P, (2018). Modeling amorphous silicon nitride: A comparative study of empirical potentials. Computational Materials Science, 148, 165. https://doi.org/10.1016/j.commatsci.2017.12.008

[15] Piaggi PM & Parrinello M, (2017). Entropy-based fingerprint for local crystalline order. The Journal of Chemical Physics, 147, 114112. https://doi.org/10.1063/1.4998408

[16] Voyiatzis E, Müller-Plathe M & Böhm C, (2013). Do transport properties of entangled linear polymers scale with excess entropy? Macromolecules, 46(21), 8710–8723. https://doi.org/10.1021/ma401617z

[17] Wallace DC, (1987). On the role of density fluctuations in the entropy of a fluid. The Journal of Chemical Physics, 87, 2282–2284. https://doi.org/10.1063/1.453158

[18] Faken D & Jonsson H, (1994). Systematic analysis of local atomic structure combined with 3D computer graphics. Computational Materials Science, 2, 279. https://doi.org/10.1016/0927-0256(94)90109-0

[19] Misawa M et al., (1979). Structure characterization of CVD amorphous Si₃N₄ by pulsed neutron total scattering. Journal of Non-Crystalline Solids, 34(3), 313–321. https://doi.org/10.1016/0022-3093(79)90018-8

[20] Jiang JZ et al., (2000). Structural characterization of cubic silicon nitride. Europhysics Letters, 51(1). https://doi.org/10.1209/epl/i2000-00337-8

[21] Ten Wolde PR & Frenkel D, (1999). Homogeneous nucleation and the Ostwald step rule. Physical Chemistry Chemical Physics, 1(9), 2191–2196. https://doi.org/10.1039/A809346F

[22] Wyckoff NW, (1962). Crystal Structures. Interscience, New York.

[23] Fang CM, de Wijs GA, Hintzen GA & de With G, (2003). Phonon spectrum and thermal properties of cubic Si₃N₄ from first-principles calculations. Journal of Applied Physics, 93, 5175. https://doi.org/10.1063/1.1566473

Downloads

Published

30-06-2025

How to Cite

Cong Thanh, D., Thi Thao, N., & Van Vinh, L. (2025). STRUCTURAL CHARACTERISTICS OF DENSIFIED SILICON NITRIDE UNDER HIGH PRESSURE: A MOLECULAR DYNAMICS STUDY. Journal of Science Natural Science, 70(2), 60-69. https://doi.org/10.18173/2354-1059.2025-0021