NONEXISTENCE RESULT FOR QUASILINEAR ELLIPTIC INEQUALITIES INVOLVING THE GRUSHIN OPERATOR

Authors

  • Le Thi Lieu Faculty of Fundamental Science, Academy of Finance, Hanoi city, Vietnam
  • Tran Thi Minh Nguyet Faculty of Fundamental Science, Academy of Finance, Hanoi city, Vietnam

DOI:

https://doi.org/10.18173/2354-1059.2025-0001

Keywords:

Liouville-type theorem, quasilinear inequality, Grushin operator, nonexistence result

Abstract

In this paper, we establish a nonexistence result of positive solutions of the inequality \( -{\rm div}_G \left( |\nabla_G u|^{p-2} \nabla_G u \right) \geq u^q \quad {\rm in} \; \mathbb{R}^N = \mathbb{R}^{N_1} \times \mathbb{R}^{N_2}, \) where \( \nabla_G = (\nabla_x, |x|^a \nabla_y) \) is the Grushin gradient, \( p, q > 1 \). Here \( (x, y) \in \mathbb{R}^{N_1} \times \mathbb{R}^{N_2} \) and \( a > 0 \). As a generalization of this result, we also establish a nonexistence result of positive solutions to the inequality \( -{\rm div}_G \left( A(|\nabla_G u|) \nabla_G u \right) \geq u^q \quad {\rm in} \; \mathbb{R}^N = \mathbb{R}^{N_1} \times \mathbb{R}^{N_2}, \) where \( A: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+} \) satisfies some conditions below. Our results can be seen as a generalization of that in Mitidieri E & Pohozaev S.I. (2001). A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities. Tr. Mat. Inst. Steklova, 234, 1–384, from the Laplace operator to the Grushin operator.

References

[1] Armstrong SN & Sirakov B, (2011). Nonexistence of positive supersolutions of elliptic equations via the maximum principle. Communications in Partial Differential Equations, 36(11), 2011–2047. DOI: 10.1080/03605302.2010.534523.

[2] Mitidieri E & Pohozaev SI, (2001). A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities. Trudy Matematicheskogo Instituta Imeni V. A. Steklova. Rossiĭskaya Akademiya Nauk, 234, 1–384.

[3] D'Ambrosio L & Mitidieri E, (2010). A priori estimates, positivity results, and nonexistence theorems for quasilinear degenerate elliptic inequalities. Advances in Mathematics, 224(3), 967–1020. DOI: 10.1016/j.aim.2009.12.017.

[4] D'Ambrosio L & Lucente S, (2003). Nonlinear Liouville theorems for Grushin and Tricomi operators. Journal of Differential Equations, 193(2), 511–541. DOI: 10.1016/S0022-0396(03)00138-4.

[5] Capuzzo DI & Cutri A, (1997). On the Liouville property for sublaplacians. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, 25(1-2), 239–256.

[6] Mitidieri E & Pohozaev SI, (1999). Nonexistence of positive solutions for quasilinear elliptic problems on ℝⁿ. Trudy Matematicheskogo Instituta imeni V.A. Steklova, 227, 192–222.

[7] Grushin VV, (1971). On a class of elliptic pseudo differential operators degenerate on a submanifold. Mathematics of the USSR-Sbornik, 13(2).

[8] Baouendi MS, (1967). On a class of degenerate elliptic operators. Bulletin de la Société Mathématique de France, 95, 45–87 (in French).

[9] Franchi B, Gutiérrez CE & Wheeden RL, (1994). Weighted Sobolev–Poincaré inequalities for Grushin type operators. Communications in Partial Differential Equations, 19(3–4), 523–604. DOI: 10.1080/03605309408821025.

[10] Kogoj AE & Lanconelli E, (2012). On semilinear Δλ-Laplace equation. Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal. Series A: Theory and Methods, 75(12), 4637–4649. DOI: 10.1016/j.na.2011.10.007.

[11] Kogoj AE & Lanconelli E, (2018). Linear and semilinear problems involving Δλ-Laplacians. Proceedings of the International Conference “Two nonlinear days in Urbino 2017”, vol. 25 of Electronic Journal of Differential Equations, Texas State Univ.--San Marcos, Dept. Math., San Marcos, TX, 167–178.

[12] Khuat QT, (2024). Liouville-type theorems for double-phase problems involving the Grushin operator. Zeitschrift für Analysis und ihre Anwendungen, 43(1), 237–257. DOI: 10.4171/ZAA/1754.

[13] Duong AT, Giang TH, Le P & Vu THA, (2021). Classification results for a sub-elliptic system involving the Δλ-Laplacian. Mathematical Methods in the Applied Sciences, 44(5), 3615–3629. DOI: 10.1002/mma.6968.

[14] Duong AT & Nguyen TQ, (2022). Liouville-type theorem for a subelliptic equation with Choquard nonlinearity and weight. Mathematical Notes, 112(5–6), 819–825. DOI: 10.1134/S0001434622110165.

[15] Duong AT & Phan QH, (2023). Nonexistence of positive solutions to a system of elliptic inequalities involving the Grushin operator. Complex Variables and Elliptic Equations, 68(3), 372–384. DOI: 10.1080/17476933.2021.1996038.

[16] Duong AT, Dao TQ & Nguyen VB, (2023). Liouville-type theorem for a nonlinear sub-elliptic system involving Δλ-Laplacian and advection terms. Journal of Fixed Point Theory and Applications, 25(52). DOI: 10.1007/s11784-023-01057-9.

[17] Duong AT & Nguyen TQ, (2023). A note on positive solutions of Lichnerowicz equations involving the Δλ-Laplacian. Topological Methods in Nonlinear Analysis, 62(2), 591–600. DOI: 10.12775/TMNA.2022.076.

[18] Cung TA & Bui KM, (2016). Liouville-type theorems for elliptic inequalities involving the Δλ-Laplace operator. Complex Variables and Elliptic Equation, 61(7), 1002–1013. DOI: 10.1080/17476933.2015.1131685.

[19] Luyen DT & Tri NM, (2015). Existence of solutions to boundary-value problems for semilinear Δγ differential equations. Mathematical Notes, 97(1–2), 73–84. DOI: 10.1134/S0001434615010101.

Downloads

Published

31-03-2025

How to Cite

Le Thi Lieu, & Tran Thi Minh Nguyet. (2025). NONEXISTENCE RESULT FOR QUASILINEAR ELLIPTIC INEQUALITIES INVOLVING THE GRUSHIN OPERATOR. Journal of Science Natural Science, 70(1), 3-14. https://doi.org/10.18173/2354-1059.2025-0001