SYNTHESIS AND STRUCTURES OF SOME BINAPHTHYL DERIVATIVES VIA SUZUKI CROSS COUPLING REACTION

Authors

  • Nguyen Hien Faculty of Chemistry, Hanoi National University of Education, Hanoi city, Vietnam
  • Tran Thu Ha Faculty of Chemistry, Hanoi National University of Education, Hanoi city, Vietnam
  • Tran Duou Ly Faculty of Chemistry, Hanoi National University of Education, Hanoi city, Vietnam
  • Duong Quoc Hoan Faculty of Chemistry, Hanoi National University of Education, Hanoi city, Vietnam

DOI:

https://doi.org/10.18173/2354-1059.2024-0006

Keywords:

binaphthyl derivative, Suzuki cross coupling reaction, asymmetric catalyst

Abstract

Four new binaphthyl derivatives 2a, 2b, 2c and 2d have been synthesized successfully via Suzuki reaction of 2,2'-dibromo-1,1'-binaphthalene (1) and phenylboronic acid derivatives in high yield. Structures of all samples were determined by 1H NMR, 13C NMR, HMBC, HSQC, and MS spectra that referred to a strong agreement between spectral data and structures.

References

[1] Thomson RH, (1971). Naturally occurring quinones. Academic Press, London.
[2] Roger A, Geissman TA & Edwards JD, (1960). Gossypol, a pigment of cottonseed. Chemical Reviews, 60(6), 555-574. DOI: 10.1021/cr60208a002.
[3] Prasad MRN & Diczfalusy E, (1983). Fertility and Sterility. Proceedings of the 11th World Congress, p. 255.
[4] Remarchuk T, Babu S, Stults J, Zanotti-Gerosa A, Roseblade S, Yang S, Huang P, Sha C & Wang Y, (2014). An efficient catalytic asymmetric synthesis of a β2-amino acid on multikilogram scale. Organic Process Research. Development, 18(1), 135-141. DOI: 10.1021/op4002966.
[5] Qin G, Chen Y, Yang L, Yang N & Yang Z, (2015). Asymmetric borane reduction of prochiral ketones catalyzed by helical poly[(S)-3-vinyl-2,2'-dihydroxy-1,1'-binaphthyl]. Chirality, 27, 422-424. DOI: 10.1002/chir.22459.
[6] Tamura M, Hayashigami N, Nakayama A, Nakagawa Y & Tomishige K, (2022). Heterogeneous enantioselective hydrogenation of ketones by 2-Amino-2′-hydroxy-1,1′-binaphthyl-Modified CeO2-Supported Ir Nanoclusters. ACS Catalysis, 12(2), 868- 876. DOI: 10.1021/acscatal.1c04427.
[7] Kshatriya R, (2023). Recent Advancement in H8–BINOL catalyzed asymmetric methodologies. ACS Omega, 20(8), 17381-17406. DOI: 10.1021/acsomega. 2c05535.
[8] Cabré A, Verdaguer X & Riera A, (2022). Recent advances in the enantioselective synthesis of chiral amines via transition metal-catalyzed asymmetric hydrogenation. Chemical Reviews, 122(1), 269-339. DOI: 10.1021/acs.chemrev. 1c00496.
[9] Huang Q, Peng Z, Xie X, Tang Z & Lei M, 2019. Triarylamine-bonded binaphthyl derivatives as fluorescence quenching probes for Fe3+: An insight into the mechanism based on a single binding site. Chemistry Select, 4, 13490-13495. DOI: 10.1002/slct.201904018.
[10] Fanta PE, (1974). The ullmann synthesis of biaryls. Synthesis, 1, 9-21. DOI: 10.1055/s-1974-23219.
[11] Preston H. Leake, (1956). The pschorr synthesis. Chemical Reviews, 56(1), 27-48. DOI: 10.1021/cr50007a002.
[12] Floyd AJ, Dyke S F & Warda SE, 1976. The synthesis of phenanthrenes. Chemical Reviews, 76(5), 509-562. DOI: 10.1021/cr60303a001.
[13] Bachmann WE, Hoffman RA, (2011). The preparation of unsymmetrical biaryls by the diazo reaction and the nitrosoacetylamine reaction. Organic Reactions, 2, 224-261. DOI: 10.1002/0471264180.or002.06.
[14] Dermer OC & Edmison MT, (1957). Radical substitution in aromatic nuclei. Chemical Reviews, 57(1), 77-122. DOI: 10.1021/cr50013a003.
[15] Hey DH, F.R.S, (1971). Pedler lecture. Spirodiene rearrangements. Quarterly Review (London), 25, 483-499. DOI: 10.1039/QR9712500483.
[16] Doussot J, Guy A & Ferroud C, (2000). Selective synthesis of 1,1′-binaphthalene derivatives by oxidative coupling with TiCl4. Tetrahedron Letters, 41(15), 2545-2547. DOI: 10.1016/S0040-4039(00)00206-9.
[17] Mosquera A, Pena MA, Sestelo JP & Sarandeses LA, (2013). Synthesis of axially chiral 1,1′-binaphthalenes by palladium-catalysed cross-coupling reactions of triorganoindium reagents. European Journal of Organic Chemistry, 13, 2555-2562. DOI: 10.1002/ejoc.201300042.
[18] Tkachenko NV & Bryliakov KP, (2019). Transition metal catalyzed aerobic asymmetric coupling of 2-naphthols. Mini-Reviews in Organic Chemistry, 16(4), 392-398. DOI: 10.2174/1570193X15666180418153713.
[19] Fan D, Khalid MI, Kamble GT, Sasai H & Takizawa S, (2022). Electrochemical synthesis of 1,1′-binaphthalene-2,2′-diamines via transition-metal-free oxidative homocoupling. Sustainable Chemistry, 3(4), 551-557. DOI: 10.3390/suschem 3040034.

Published

27-03-2024