PHYSICAL VAPOR DEPOSITION AND CHEMICAL VAPOR DEPOSITION APPROACHES FOR CONTROLLED GROWTH OF WSe\(_2\) SINGLE-LAYER

Authors

  • Nguyen Anh Duc Faculty of Basic-Fundamental Sciences, Vietnam Maritime University, Hai Phong city, Vietnam
  • Nguyen Thi Nhan Faculty of Basic-Fundamental Sciences, Vietnam Maritime University, Hai Phong city, Vietnam

DOI:

https://doi.org/10.18173/2354-1059.2024-0004

Keywords:

two-dimensional nanomaterial, single-layer WSe2, physical vapor deposition, chemical vapor deposition

Abstract

In this paper, two-dimensional ultrathin films of tungsten diselenide (2D-WSe2) are synthesized on Si/SiO2 substrate by using two approaches, physical vapor deposition (PVD) and chemical vapor deposition (CVD). The essential parameters of deposition conditions including temperature, pressure, and gas flow of both methods are presented. The samples were examined for their morphology by optical microscopy (OM), scanning electron microscopy (SEM), atomic force microscopy (AFM), and for the crystal lattice vibration properties by Raman scattering spectrum. The results show that the single crystal flakes are located separately in hexagonal or triangular shapes with edge lengths ranging from 20 µm to 100 µm, or can be linked together to form a continuous film. The thickness of most of the film area obtained from both methods can be controlled to a single layer (1L-WSe2). In addition, the photoluminescence spectra (PL) of the samples were investigated, which indirectly evaluated the crystallization quality of the thin films prepared from the two methods. 

References

[1] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV & Firsov AA, (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, 306(5696), 666-669. DOI: 10.1126/science.110289.

[2] Kumbhakar P, Jayan JS, Sreedevi Madhavikutty A, Sreeram PR, Saritha A, Ito T & Tiwary CS, (2023). Prospective applications of two-dimensional materials beyond laboratory frontiers: A review. iScience, 26(5), 106671. DOI: 10.1016/j.isci.2023. 106671.

[3] Shanmugam V, Mensah RA, Babu K, Gawusu S, Chanda A, Tu Y, Neisiany RE, Försth M, Sas G & Das O, (2022). A Review of the Synthesis, Properties, and Applications of 2D Materials. Particle & Particle Systems Characterization, 39(6), 2200031. DOI: 10.1002/ppsc.202200031.

[4] Naikoo GA, Arshad F, Almas M, Hassan IU, Pedram MZ, Aljabali AAA, Mishra V, Serrano-Aroca A, Birkett M, Charbe NB, Goyal R, Negi P, El-Tanani M & Tambuwala MM, (2022). 2D materials, synthesis, characterization, and toxicity: A critical review. Chemico-Biological Interactions, 365(25), 110081. DOI: 10.1016/j.cbi.2022.110081.

[5] Chowdhury T, Sadler EC & Kempa TJ, (2020). Progress and Prospects in Transition-Metal Dichalcogenide Research Beyond 2D. Chemical Reviews, 120(22), 12563-12591. DOI: 10.1021/acs.chemrev.0c00505.

[6] Lee H, Paeng K & Kim IS, (2018). A review of doping modulation in graphene. Synthetic Metals, 244, 36-47. DOI: 10.1016/j.synthmet.2018.07.001.

[7] Nguyen HY, Le XH, Pham NT, Phan NH & Pham TN, (2020). Synthesis of graphene quantum dots and Nitrogen-doped graphene quantum dots: Raman characterization and their optical properties. HNUE Journal of Science: Natural Science, 65(3), 82-90. DOI: 10.18173/2354-1059.2020-0010

[8] Joseph S, Mohan J, Lakshmy S, Thomas S, Chakraborty B, Thomas S & Kalarikkal N, (2023). A review of the synthesis, properties, and applications of 2D transition metal dichalcogenides and their heterostructures. Materials Chemistry and Physics, 297(1), 127332. DOI: 10.1016/j.matchemphys.2023.127332.

[9] Li Y, Kuang G, Jiao Z, Yao L & Duan R, (2022). Recent progress on the mechanical exfoliation of 2D transition metal dichalcogenides. Materials Research Express, 9(12), 122001. DOI: 10.1088/2053-1591/aca6c6.

[10] Li H, Wu J, Yin Z & Zhang H, (2014). Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc. Chemical Research, 47(4), 1067-75. DOI: 10.1021/ar4002312.

[11] Fang H, Chuang S, Chang TC, Takei K, Takahashi T & Javey A, (2012). High-Performance Single Layered WSe2 p-FETs with Chemically Doped Contacts. Nano Letters, 12(7), 3788-3792. DOI: 10.1021/nl301702r.

[12] Zhou H, Wang C, Shaw JC, Cheng R, Chen Y, Huang X, Liu Y, Weiss NO, Lin Z, Huang Y & Duan X, (2015). Large area growth and electrical properties of p-type WSe2 atomic layers. Nano Letters, 15(1), 709-13. DOI: 10.1021/nl504256y.

[13] Clark G, Wu S, Rivera P, Finney J, Nguyen P, Cobden DH & Xu X, (2014). Vapor-transport growth of high optical quality WSe2 monolayers. APL Materials, 2(10), 101101. DOI: 10.1063/1.4896591.

[14] Zhang S, Wang C-G, Li M-Y, Huang D, Li L-J, Ji W & Wu S, (2017). Defect Structure of Localized Excitons in a WSe2 Monolayer. Physical Review Letters, 119(4), 161302 (1-d). DOI: 10.1103/PhysRevLett.119.046101.

[15] Liu B, Fathi M, Chen L, Abbas A, Ma Y & Zhou C, (2015). Chemical Vapor Deposition Growth of Monolayer WSe2 with Tunable Device Characteristics and Growth Mechanism Study. ACS Nano, 9(6), 6119-6127. DOI: 10.1021/acsnano. 5b01301.

[16] Hao G, Kou L, Lu D, Peng J, Li J, Tang C & Zhong J, (2016). Electrostatic properties of two-dimensional WSe2 nanostructures. Journal of Applied Physics, 119(3), 035301. DOI: 10.1063/1.4940160.

[17] Cheng Q, Pang J, Sun D, Wang J, Zhang S, Liu F, Chen Y, Yang R, Liang N, Lu X, Ji Y, Wang J, Zhang C, Sang Y, Liu H & Zhou W, (2020). WSe2 2D p‐type semiconductor‐based electronic devices for information technology: Design, preparation, and applications. InfoMat, 2(4), 656-697. DOI: 10.1002/inf2.12093.

[18] Wang X, Li Y, Zhuo L, Zheng J, Peng X, Jiao Z, Xiong X, Han J & Xiao W, (2018). Controllable growth of two-dimensional WSe2 using salt as co-solvent. CrystEngComm, 20(40), 6267-6272. DOI: 10.1039/C8CE01162A.

[19] Huang J-K, Pu J, Hsu C-L, Chiu M-H, Juang Z-Y, Chang Y-H, Chang W-H, Iwasa Y, Takenobu T & Li L-J, (2014). Large-Area Synthesis of Highly Crystalline WSe2 Monolayers and Device Applications. ACS Nano, 8(1), 923-930. DOI: 10.1021/nn405719x.

[20] Tonndorf P, Schmidt R, Böttger P, Zhang X, Börner J, Liebig A, Albrecht M, Kloc C, Gordan O, Zahn DRT, Michaelis de Vasconcellos S & Bratschitsch R, (2013). Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Optics Express, 21(4), 4908-4916. DOI: 10.1364/OE.21.004908.

[21] Lee C, Yan H, Brus LE, Heinz TF, Hone J & Ryu S, (2010). Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano, 4(5), 2695-2700. DOI: 10.1021/nn1003937.

[22] Yan T, Qiao X, Liu X, Tan P & Zhang X, (2014). Photoluminescence properties and exciton dynamics in monolayer WSe2. Applied Physics Letters, 105(10), 101901 (1-4). DOI: 10.1063/1.4895471.

[23] Ramasubramaniam A, (2012). Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Physical Review B, 86(11), 115409 (1-6). DOI: 10.1103/PhysRevB.86.115409.

[24] Malic E, Selig M, Feierabend M, Brem S, Christiansen D, Wendler F, Knorr A & Berghäuser G, (2018). Dark excitons in transition metal dichalcogenides. Physical Review Materials, 2(1), 014002-1-014002-7. DOI: 10.1103/PhysRevMaterials. 2.014002.

[25] Robert C, Amand T, Cadiz F, Lagarde D, Courtade E, Manca M, Taniguchi T, Watanabe K, Urbaszek B & Marie X, (2017). Fine structure and lifetime of dark excitons in transition metal dichalcogenide monolayers. Physical Review B, 96(15), 155423. DOI: 10.1103/PhysRevB.96.155423.

Downloads

Published

29-03-2024