STUDY ON GEOMETRICAL STRUCTURES AND ABSORPTION SPECTRA OF M CLUSTERS (M = Cu, Ag, Au) ENCAPSULATED IN SAPO-42 ZEOLITE -CAGE USING DENSITY FUNCTIONAL THEORY
DOI:
https://doi.org/10.18173/2354-1059.2024-0038Keywords:
SAPO-42 zeolite, density functional theory (DFT), time-dependent density functional theory (TD-DFT), MAbstract
The most stable structures of tetrahedral M42+ cluster (M = Cu, Ag, Au) encapsulated in SAPO-42 zeolite
References
[1] Lu Y, Wei W & Chen W, (2012). Copper nanoclusters: Synthesis, characterization and properties. Chinese Science Bulletin, 57(1), 41-47.
[2] Yin B & Luo Z, (2021). Coinage metal clusters: From superatom chemistry to genetic materials. Coordination Chemistry Reviews, 429, 213643. DOI:10.1016/j.ccr.2020.213643. [3] Hongxin Si, Tong Shu, Xin Du, Lei Su & Xueji Zhang, (2022), An Overview on Coinage Metal Nanocluster-Based Luminescent Biosensors via Etching Chemistry. Biosensors, 12(7), 511.
[4] Nguyen TTH, Nguyen TMH, Bui CT, Nguyen NH & Le MC, (2019). Study on the Adsorption and Activation Behaviours of Carbon Dioxide over Copper Cluster (Cu4) and Alumina-Supported Copper Catalyst (Cu4/Al2O3) by means of Density Functional Theory. Journal of Chemistry, 1, 10. DOI:10.1155/2019/4341056.
[5] Edward IS, David EH, Esther MJ, Jake WG, Jordi C, Munzarin Q, Matthew TKE, Christian HK, Ryan G. Hadt & Li T, (2014). Copper Active Sites in Biology. Chemical Reviews, 114(7), 3659-3853. DOI:10.1021/cr400327t.
[6] Le TMO, Lam TH, Pham TN, Ngo TC, Lai ND, Do DB & Nguyen VM, (2018). Enhancement of Rhodamine B Degradation by Ag Nanoclusters-Loaded g-C3N4 Nanosheets. Polymers, 10, 633. https://www.mdpi.com/2073-4360/10/6/633.
[7] Collins F, Rozhkovskaya A, Outram JG & Millar GJ, (2019). A critical review of waste resources, synthesis, and applications for Zeolite LTA. Microporous and Mesoporous Materials, 290, 109668. DOI:10.1016/j.micromeso. 2019.1096. [8] Martínez-Franco R, Cantín Á, Vidal-Moya A, Moliner M & Corma A, (2015). Self-Assembled Aromatic Molecules as Efficient Organic Structure Directing Agents to Synthesize the Silicoaluminophosphate SAPO-42 with Isolated Si Species. Chemistry of Materials, 27(8), 2981-2989. DOI:10.1021/acs.chemmater.5b00337.
[9] Kühl GH & Schmitt KD, (1990). Reexamination of phosphorus-containing zeolites ZK-21 and ZK-22 in light of SAPO-42 Zeolites, 10(1), 2-7. DOI:10.1016/0144-2449(90)90086-7.
[10] Pinilla-Herrero I, Olsbye U, Márquez-Álvarez C & Sastre E, (2017). Effect of framework topology of SAPO catalysts on selectivity and deactivation profile in the methanol-to-olefins reaction. Journal of Catalysis, 352, 191-207. DOI:10.1016/j.jcat.2017.05.008.
[11] Pinilla-Herrero I, Márquez-Álvarez C, Sastre E, 2017. The complex relationship between SAPO framework topology, content, distribution of Si, and catalytic behaviour in the MTO reaction. Catalysis Science & Technology, 7(17), 3892-3901. DOI:10.1039/c7cy01250k.
[12] Pérez-Botella E, Martínez-Franco R, González-Camuñas N, Cantín Á, Palomino M, Moliner M, Valencia S & Rey F, (2020). Unusually Low Heat of Adsorption of CO2 on AlPO and SAPO Molecular Sieves. Frontiers in Chemistry, 8, 588712. DOI: 10.3389/fchem.2020.588712.
[13] Pierloot K, Delabie A, Groothaert MH, Schoonheydt RA, (2001). A reinterpretation of the EPR spectra of Cu(II) in zeolites A, Y, and ZK4, based on ab initio cluster model calculations. Physical Chemistry Chemical Physics, 3(11), 2174-2183. DOI:10.1039/b100531f .
[14] Michalik J, Zamadics M, Sadlo J & Kevan L, (1993). Electron spin resonance and electron spin echo modulation studies on radiation-induced silver agglomeration in a SAPO-42 molecular sieve: a comparison with isostructural zeolite A. The Journal of Physical Chemistry, 97(40), 10440-10444. DOI:10.1021/j100142a029.
[15] Nana Y, Chao M, Yi C, Xiaona L, Lei C, Peng G, Peng T & Zhongmin L, (2020). Rational Design of a Novel Catalyst Cu-SAPO-42 for NH3-SCR Reaction. Small, 16 (33), 2000902. DOI:10.1002/smll.202000902.
[16] Didier G, Eduardo CG, Ngo TC, Eduard F, Wouter B, Saleh A, Philomena S, Francesco DA, Dipanjan B, Maarten BJR, Nguyen MT, Johan H & Peter L, (2018). Origin of the bright photoluminescence of few-atom silver clusters confined in LTA zeolites. Science, 361(6403), 686-690.
[17] Frisch MJ, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA & et al., (2009). (Gaussian 09 Revision: D.01, 2009), Gaussian 09 Revision: D.01.
[18] Hohenberg P & Kohn W, 1964. Inhomogeneous Electron Gas. Physical Review B, 136, 864.
[19] Becke AD, (1993). Density-functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 98, 5648.
[20] Perdew JP, Burke K & Ernzerhof M, (1996). Generalized gradient approximation made simple. Physical Review Letters, 77, 3865.
[21] Hay PJ & Wadt WR, (1998). Ab initio effective core potentials for molecular calculations-potentials for the transition-metal atoms Sc to Hg. Journal of Chemical Physics, 82, 270.