STUDY ON GEOMETRICAL STRUCTURES AND ABSORPTION SPECTRA OF M\(_4\)\(^{2+}\) CLUSTERS (M = Cu, Ag, Au) ENCAPSULATED IN SAPO-42 ZEOLITE \(\beta\)-CAGE USING DENSITY FUNCTIONAL THEORY
DOI:
https://doi.org/10.18173/2354-1059.2024-0038Keywords:
SAPO-42 zeolite, density functional theory (DFT), time-dependent density functional theory (TD-DFT), M\(_4\)\(^{2+}\) clusterAbstract
The most stable structures of tetrahedral M42+ cluster (M = Cu, Ag, Au) encapsulated in SAPO-42 zeolite \(\beta\)-cage have been determined by the DFT method using a/the B3LYP functional and LANL2DZ basis set. Electronic energies, zero point correction to energies and geometries, as well as the charge of the clusters, have been derived accordingly. The results showed that while the Cu-Cu bond length increases much when Cu42+ is in the framework, the Ag-Ag and Au-Au distances do not. The UV-Vis spectra of the [M4@SAPO-42]2+ clusters, which were calculated at the same hybrid B3LYP functional and the LANL2DZ basis set, show strong absorption peaks at 259 nm, 270 nm, and 259 nm for M being Cu, Ag, and Au, respectively. The nature of electronic transitions that are responsible for the absorption peaks in the UV-Vis spectrum of the [M4-SAPO-42]2+ clusters has been revealed.
References
[1] Lu Y, Wei W & Chen W, (2012). Copper nanoclusters: Synthesis, characterization and properties. Chinese Science Bulletin, 57(1), 41-47.
[2] Yin B & Luo Z, (2021). Coinage metal clusters: From superatom chemistry to genetic materials. Coordination Chemistry Reviews, 429, 213643. DOI:10.1016/j.ccr.2020.213643. [3] Hongxin Si, Tong Shu, Xin Du, Lei Su & Xueji Zhang, (2022), An Overview on Coinage Metal Nanocluster-Based Luminescent Biosensors via Etching Chemistry. Biosensors, 12(7), 511.
[4] Nguyen TTH, Nguyen TMH, Bui CT, Nguyen NH & Le MC, (2019). Study on the Adsorption and Activation Behaviours of Carbon Dioxide over Copper Cluster (Cu4) and Alumina-Supported Copper Catalyst (Cu4/Al2O3) by means of Density Functional Theory. Journal of Chemistry, 1, 10. DOI:10.1155/2019/4341056.
[5] Edward IS, David EH, Esther MJ, Jake WG, Jordi C, Munzarin Q, Matthew TKE, Christian HK, Ryan G. Hadt & Li T, (2014). Copper Active Sites in Biology. Chemical Reviews, 114(7), 3659-3853. DOI:10.1021/cr400327t.
[6] Le TMO, Lam TH, Pham TN, Ngo TC, Lai ND, Do DB & Nguyen VM, (2018). Enhancement of Rhodamine B Degradation by Ag Nanoclusters-Loaded g-C3N4 Nanosheets. Polymers, 10, 633. https://www.mdpi.com/2073-4360/10/6/633.
[7] Collins F, Rozhkovskaya A, Outram JG & Millar GJ, (2019). A critical review of waste resources, synthesis, and applications for Zeolite LTA. Microporous and Mesoporous Materials, 290, 109668. DOI:10.1016/j.micromeso. 2019.1096. [8] Martínez-Franco R, Cantín Á, Vidal-Moya A, Moliner M & Corma A, (2015). Self-Assembled Aromatic Molecules as Efficient Organic Structure Directing Agents to Synthesize the Silicoaluminophosphate SAPO-42 with Isolated Si Species. Chemistry of Materials, 27(8), 2981-2989. DOI:10.1021/acs.chemmater.5b00337.
[9] Kühl GH & Schmitt KD, (1990). Reexamination of phosphorus-containing zeolites ZK-21 and ZK-22 in light of SAPO-42 Zeolites, 10(1), 2-7. DOI:10.1016/0144-2449(90)90086-7.
[10] Pinilla-Herrero I, Olsbye U, Márquez-Álvarez C & Sastre E, (2017). Effect of framework topology of SAPO catalysts on selectivity and deactivation profile in the methanol-to-olefins reaction. Journal of Catalysis, 352, 191-207. DOI:10.1016/j.jcat.2017.05.008.
[11] Pinilla-Herrero I, Márquez-Álvarez C, Sastre E, 2017. The complex relationship between SAPO framework topology, content, distribution of Si, and catalytic behaviour in the MTO reaction. Catalysis Science & Technology, 7(17), 3892-3901. DOI:10.1039/c7cy01250k.
[12] Pérez-Botella E, Martínez-Franco R, González-Camuñas N, Cantín Á, Palomino M, Moliner M, Valencia S & Rey F, (2020). Unusually Low Heat of Adsorption of CO2 on AlPO and SAPO Molecular Sieves. Frontiers in Chemistry, 8, 588712. DOI: 10.3389/fchem.2020.588712.
[13] Pierloot K, Delabie A, Groothaert MH, Schoonheydt RA, (2001). A reinterpretation of the EPR spectra of Cu(II) in zeolites A, Y, and ZK4, based on ab initio cluster model calculations. Physical Chemistry Chemical Physics, 3(11), 2174-2183. DOI:10.1039/b100531f .
[14] Michalik J, Zamadics M, Sadlo J & Kevan L, (1993). Electron spin resonance and electron spin echo modulation studies on radiation-induced silver agglomeration in a SAPO-42 molecular sieve: a comparison with isostructural zeolite A. The Journal of Physical Chemistry, 97(40), 10440-10444. DOI:10.1021/j100142a029.
[15] Nana Y, Chao M, Yi C, Xiaona L, Lei C, Peng G, Peng T & Zhongmin L, (2020). Rational Design of a Novel Catalyst Cu-SAPO-42 for NH3-SCR Reaction. Small, 16 (33), 2000902. DOI:10.1002/smll.202000902.
[16] Didier G, Eduardo CG, Ngo TC, Eduard F, Wouter B, Saleh A, Philomena S, Francesco DA, Dipanjan B, Maarten BJR, Nguyen MT, Johan H & Peter L, (2018). Origin of the bright photoluminescence of few-atom silver clusters confined in LTA zeolites. Science, 361(6403), 686-690.
[17] Frisch MJ, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA & et al., (2009). (Gaussian 09 Revision: D.01, 2009), Gaussian 09 Revision: D.01.
[18] Hohenberg P & Kohn W, 1964. Inhomogeneous Electron Gas. Physical Review B, 136, 864.
[19] Becke AD, (1993). Density-functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 98, 5648.
[20] Perdew JP, Burke K & Ernzerhof M, (1996). Generalized gradient approximation made simple. Physical Review Letters, 77, 3865.
[21] Hay PJ & Wadt WR, (1998). Ab initio effective core potentials for molecular calculations-potentials for the transition-metal atoms Sc to Hg. Journal of Chemical Physics, 82, 270.