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Abstract. This paper is concerned with the stabilization problem of discrete 2D
linear systems described by the second Fornasini-Marchesini model. A necessary
and sufficient condition involving the characteristic polynomial is first quoted by
which the unforced system is structurally or exponentially stable. On the basis of
the derived stability condition, a tractable condition is formulated in the form of
linear matrix inequality for obtaining the controller gain of a desired stabilizing
state-feedback controller.
Keywords: 2D systems, Fornasini-Marchesini model, state-feedback controller,
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1. Introduction
Consider the following control system

x(i+ 1, j + 1) = A1x(i+ 1, j) + A2x(i, j + 1) +Bu(i, j), (1.1)

where x(i, j) ∈ Rn is the state vector, u(i, j) ∈ Rm is the control input vector and A1, A2,
B are real matrices of appropriate dimensions. In system (1.1), the dynamic propagation
is specified in two independent directions in two time scales defined by i and j.
By which, system (1.1) belongs to a special dynamical systems called two-dimensional
(2D) systems [1]. In addition, the 2D linear system (1.1) is described by the so-called
Fornasini-Marchesini model (FM model). In the past few decades, 2D systems have
drawn wide attention due to their extensive applications in many fields such as signal
filtering, image processing, or repetitive processes. Many studies of 2D systems have
been reported in the literature, especially the stability analysis of 2D systems. We refer
the reader to recent works [1]-[5] and references therein.
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For given initial sequences x(0, j) and x(i, 0), the unique state trajectory of system
(1.1) can be represented by

x(i+ 1, j + 1) =
i∑

k=0

Φ(k, j)A1x(i+ 1− k, 0) +

j∑
k=0

Φ(i, k)A2x(0, j + 1− k), (1.2)

where the fundamental matrix Φ(i, j) is defined inductively by

Φ(i+ 1, j + 1) = Φ(i, j + 1)A2 + Φ(i+ 1, j)A1,

Φ(i, 0) = A2, Φ(0, j) = A1.

The unforced system of (1.1) is said to be structurally stable (FM-SS) if

det(λµIn − λA1 − µA2) ̸= 0

for all λ, µ ∈ C that satisfy |λ| ≥ 1 and |µ| ≥ 1. According to [2], [5], system (1.1) is
said to be exponentially stable (FM-ES1) if there exist scalars M > 0 and q ∈ (0, 1) such
that for any initial sequences (x(0, j), x(i, 0)), (i, j) ∈ N2, we have

∥x(i, j)∥ ≤ M

(
l∑

k=0

∥x(0, k)∥
qk+1

+
i∑

k=0

∥x(k, 0)∥
qk+1

)
qi+j.

On the other hand, system (1.1) is exponentially stable in the second sense (FM-ES2) if for
any exponentially convergent initial sequences x(0, j), x(i, 0), that is, for all (i, j) ∈ N2,

∥x(0, j)∥ ≤ Mqj, ∥x(i, 0)∥ ≤ Mqi

with scalars M > 0 and q ∈ (0, 1), there exist a q̃ ∈ (0, 1) and a M̃ > 0 such that

∥x(i, j)∥ ≤ M̃ q̃i+j.

It was shown in [3] that the above stability concepts are indeed equivalent

FM-SS ⇐⇒ FM-ES1 ⇐⇒ FM-ES2.

Moreover, system (1.1) is FM-SS if and only if

det(In − λA1 − µA2) ̸= 0 (1.3)

for all λ, µ ∈ C with |λ| ≤ 1 and |µ| ≤ 1.
Condition (1.3) provides a characterization for checking stability of open-loop

system of (1.1). Assume that the open system of (1.1) is not structurally stable. We
aim to design a state-feedback controller (SFC) of the form

u(i, j) = Kx(i, j), (1.4)
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where K ∈ Rn×m is the controller gain which will be determined. By integrating the
controller (1.4), the resulting closed-loop system of (1.1) can be represented as

x(i+ 1, j + 1) = Acx(i, j) + A1x(i+ 1, j) + A2x(i, j + 1), (1.5)

with Ac = BK. System (1.5) is typically referred to general FM model by which
condition (1.3) cannot be directly adapted. In addition, for the design problem of K,
the obtained stability condition through characteristic polynomial is not tractable due to
the existence of an unknown matrix K. This motivates us for the present study to deal
with the stabilization problem of (1.1).

2. Stability of 2D linear Roesser systems
Consider the following 2D system described by the Roesser model[

xh(i+ 1, j)

xv(i, j + 1)

]
=

[
A11 A12

A21 A22

]
︸ ︷︷ ︸

A

[
xh(i, j)

xv(i, j)

]
, (2.1)

where xh(i, j) ∈ Rn1 , xv(i, j) ∈ Rn2 are the horizontal and vertical vector states,
respectively, A is a given real matrix of appropriate dimension. Initial conditions of
system (2.1) are determined by sequences xh(0, j) and xv(i, 0) for all i, j ∈ N. We
also denote by

x(i, j) = [xh⊤(i, j), xv⊤(i, j)]⊤ ∈ Rn, n = n1 + n2.

For the Roesser system, we have the following important concept.

Definition 2.1. The 2D Roesser system (2.1) is said to be structurally stable (R-SS) if

det

([
λIn1 0

0 µIn2

]
− A

)
̸= 0 (2.2)

for all λ, µ ∈ C with |λ| ≥ 1 and |µ| ≥ 1.

Definition 2.2. System (2.1) is exponentially stable (R-ES1) if there exists scalars M > 0

and q ∈ (0, 1) such that for any initial sequences (xh(0, j), xv(i, 0)), it holds that

∥x(i, j)∥ ≤ M

(
l∑

k=0

∥xh(0, k)∥
qk+1

+
i∑

k=0

∥xv(k, 0)∥
qk+1

)
qi+j.

Definition 2.3. System (2.1) is exponentially stable (R-ES2) if for exponential decaying
initial sequences xh(0, j), xv(i, 0), that is, for all (i, j) ∈ N2,

∥xh(0, j)∥ ≤ Mqj, ∥xv(i, 0)∥ ≤ Mqi

with M > 0 and q ∈ (0, 1), then there exist q̃ ∈ (0, 1) and M̃ > 0 such that

∥x(i, j)∥ ≤ M̃ q̃i+j.
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It was shown using the connection between various stability concepts for the
Roesser model and FM model that, for 2D Roesser system (2.1), the concepts of R-SS,
R-ES1 and R-ES2 are equivalent [3]. Moreover, we have the following result which is
essential for our design problem in the next section.

Theorem 2.1. The Roesser system (2.1) is structurally stable if and only if

det

(
In1+n2 −

[
λIn1 0

0 µIn2

]
A

)
̸= 0 (2.3)

for all λ, µ ∈ C satisfying |λ| ≤ 1, |µ| ≤ 1.

Corollary 2.1. If the Roesser system (2.1) is structurally stable, then the moduli of the
eigenvalues of matrices A11 and A22 must lie within the unit disk of the complex plane C.
In other words, the matrices A11 and A22 are Schur stable (spectral radius less than 1).

3. Controller design
In this section, we address the design problem of a desired SFC (1.4) by which

the closed-loop system (1.5) is structurally stable (or equivalent FM-ES1 and FM-ES2).
Consider the closed-loop system (1.5). By using the following state transformations

xh(i, j) = x(i+ 1, j)− A1x(i, j),

xv(i, j) = x(i, j),
(3.1)

system (1.5) can be represented by the Roesser model[
xh(i+ 1, j)

xv(i, j + 1)

]
=

[
A2 Ac + A1A2

In A1

]
︸ ︷︷ ︸

A

[
xh(i, j)

xv(i, j)

]
. (3.2)

According to the transformations in (3.1), it can be verified that (1.5) is structurally
stable (corresponding to FM-ES1 and FM-ES2) if and only if the Roesser system (3.2)
is structurally stable (corresponding to R-ES1 and R-ES2 stable). Based on the Roesser
system model (3.2), we find tractable conditions for the design of a stabilizing controller
(1.4).

Let us denote the block matrix A by

A =

[
A2 Ac + A1A2

In A1

]
≜

[
A11 A12

A21 A22

]
.

According to Theorem 2.1, the Roesser system (3.2) is structurally stable (corresponding
to R-ES1 and R-ES2 stable) if and only if

det

[
In − z1A11 −z1A12

−z2A21 In − z2A22

]
̸= 0 (3.3)
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for all z1, z2 ∈ C with |z1| ≤ 1 and |z2| ≤ 1.
The following result is a special connection from characteristic polynomial

condition to LMI setting.

Theorem 3.1. Condition (3.3) holds if there exist symmetric positive definite matrices
P,Q such that

A⊤DP,QA−DP,Q < 0, (3.4)

where DP,Q = diag(P,Q).

Proof. In contrast, assume that there exists a point z = (z1, z2) in the unit disk D defined
by

D = {(z1, z2) : z1, z2 ∈ C, |z1| ≤ 1, |z2| ≤ 1}

such that ∣∣∣∣In − z1A11 −z1A12

−z2A21 In − z2A22

∣∣∣∣ = 0.

Then, there is a vector X ∈ R2n such that[
In − z1A11 −z1A12

−z2A21 In − z2A22

]
X = 0

and hence
X = I(z1, z2)AX ,

where I(z1, z2) = diag(z1In, z2In). Let S = DP,Q − A⊤DP,QA > 0 and denote by X ∗,
z∗ the conjugate of X and z = (z1, z2). we have,

X ∗DP,QX = X ∗A⊤I(z∗1 , z∗2)DP,QI(z1, z2)AX
= X ∗A⊤I(|z1|2, |z2|2)DP,QAX
= X ∗DP,QX − X ∗SX
− X ∗A⊤I(1− |z1|2, 1− |z2|2)DP,QAX

≤ X ∗DP,QX − X ∗SX .

This yields X = 0 due to S > 0. This contradicts with X ̸= 0.

Condition (3.4) is quadratic with respect to the control parameter matrix K. Thus,
it is not feasible for the design problem. To find K, we define the matrix variables

P̃ = P−1, Q̃ = Q−1

and DP̃ ,Q̃ = diag(P̃ , Q̃). Note that,

diag(P̃ , Q̃) = D−1
P,Q and DP̃ ,Q̃ = D−1

P,Q.
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By pre- and post-multiplying with DP̃ ,Q̃, condition (3.4) holds if and only if

DP̃ ,Q̃A
⊤D−1

P̃ ,Q̃
ADP̃ ,Q̃ −DP̃ ,Q̃ < 0. (3.5)

Note further that matrix A can be written as

A =

[
A2 A1A2

In A1

]
︸ ︷︷ ︸

Â

+

[
B

0

]
︸︷︷︸
B̂

[
0 K

]︸ ︷︷ ︸
K̂

.

By applying the Schur complement lemma, condition (3.5) is equivalent to[
−DP̃ ,Q̃ DP̃ ,Q̃Â⊤ +DP̃ ,Q̃K̂

⊤B̂⊤

ÂDP̃ ,Q̃ + B̂K̂DP̃ ,Q̃ −DP̃ ,Q̃

]
< 0. (3.6)

Now, by the change of variable
DP̃ ,Q̃K̂

⊤ = Z⊤, (3.7)

condition (3.6) becomes[
−DP̃ ,Q̃ DP̃ ,Q̃Â⊤ + Z⊤B̂⊤

ÂDP̃ ,Q̃ + B̂Z −DP̃ ,Q̃

]
< 0. (3.8)

Due to the structure of the gain matrix K and the variable change (3.7), matrix Z is
designed as

Z =
[
0 Ẑ

]
.

Then, from (3.8) we get
K = ẐQ̃−1.

These results are summarized in the following theorem.

Theorem 3.2. The 2D FM system (1.1) is stabilizable (in the sense of structural stability
FM-SS or exponential stability FM-ES1, FM-ES2) via an SFC (1.4) if there exist
symmetric positive definite matrices P̃ , Q̃ and real matrix Ẑ satisfying the linear matrix
inequality (3.8). Moreover, the controller gain matrix is given by

K = ẐQ̃−1.

4. Simulations
In this section, we give a numerical example with simulations to illustrate the

effectiveness of the design conditions.

44



Stabilization of discrete 2D linear systems in Fornasini-Marchesini model

Consider a 2D FM system in the form of (1.1) with the system matrices

A1 =

[
0.15 0.1

0.66 0.75

]
, A2 =

[
0.3 0.5

0.4 0.6

]
, B =

[
1

1

]
.

It can be verified that the open-loop system is unstable. A state trajectory xh(i, j) =[
xh
1(i, j)

xh
2(i, j)

]
of the open-loop system is presented in Fig. 1(a)-(b). It can be seen that the

system state jumps out from the the original surface.

(a) (b)
Figure 1. A state trajectory of the open-loop system

We now utilize the design conditions given in Theorem 3.2. By using the LMI
Toolbox to solve (3.8) with respect to matrix variables P̃ , Q̃ and Ẑ we then obtain

P̃ =

[
57.0698 −36.4908

−36.4908 26.3855

]
, Q̃ =

[
77.8401 −45.5475

−45.5475 84.8703

]
,

Ẑ =
[
−2.7858 −30.2072

]
.

By Theorem 3.2, the controller gain is obtained as

K = ẐQ̃−1 =
[
−0.3558 −0.5469

]
.

With the obtained controller gain, the closed-loop system (1.5) is stable. A state
trajectory of system (1.5) is presented in Fig. 2(a)-(b). It can be seen that the conducted
state trajectory converges to the original surface. This demonstrates the effectiveness of
the design method.
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(a) (b)
Figure 2. A state trajectory of the closed-loop system

5. Conclusions
In this paper, the stabilization problem has been developed for a class of 2D linear

systems are described by the second Fornasini-Marchesini model. Based on a necessary
and sufficient condition involving the characteristic polynomial, tractable conditions have
been formulated in the form of linear matrix inequalities for obtaining the controller
gain of a desired stabilizing state-feedback controller. The effectiveness of the derived
stabilization conditions has been validated via numerical simulations.
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