#### HNUE JOURNAL OF SCIENCE

Natural Sciences 2025, Volume 70, Issue 2, pp. 78-90 This paper is available online at http://hnuejs.edu.vn/ns

DOI: 10.18173/2354-1059.2025-0023

# INVESTIGATION OF THE PROPERTIES AND ENHANCED PHOTOCATALYTIC ACTIVITY OF Bi<sub>2</sub>WO<sub>6</sub>/g-C<sub>3</sub>N<sub>4</sub> COMPOSITE MATERIALS

Luc Huy Hoang <sup>1,2</sup>, Tu Nhu Hanh<sup>2</sup>, Vu Quoc Trung<sup>2</sup> and Nguyen Dang Phu<sup>3,\*</sup>

<sup>1</sup>Institute of Natural Sciences, Hanoi National University of Education,

Hanoi city, Vietnam

<sup>2</sup>Faculty of Physics, Hanoi National University of Education, Hanoi city, Vietnam

<sup>3</sup>Faculty of Electronics and Telecommunications, University of Engineering

and Technology, Vietnam National University, Hanoi city, Vietnam

\*Corresponding author: Nguyen Dang Phu, e-mail: phund@vnu.edu.vn

Received May 14, 2025. Revised June 20, 2025. Accepted June 30, 2025.

**Abstract.** Bi<sub>2</sub>WO<sub>6</sub>/g-C<sub>3</sub>N<sub>4</sub> composite materials with varying g-C<sub>3</sub>N<sub>4</sub> weight fractions (5%, 10%, 15% and 20%) were successfully synthesized using a combined microwave-hydrothermal method. The structural, morphological, and optical properties of the composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-Vis absorption spectroscopy, and photoluminescence (PL) spectroscopy. Photocatalytic performance was evaluated by the degradation of Rhodamine B (RhB) under simulated sunlight, employing a cutoff filter to eliminate wavelengths below 400 nm. The incorporation of g-C<sub>3</sub>N<sub>4</sub> into Bi<sub>2</sub>WO<sub>6</sub> was found to significantly modify its morphology and enhance its optical absorption. All composite samples exhibited superior photocatalytic activity compared to pure Bi<sub>2</sub>WO<sub>6</sub>, with the 10 wt% g-C<sub>3</sub>N<sub>4</sub> composite achieving the highest degradation rate, approximately seven times that of pristine Bi<sub>2</sub>WO<sub>6</sub>. This enhancement is primarily attributed to the formation of a Z-scheme heterojunction between Bi<sub>2</sub>WO<sub>6</sub> and g-C<sub>3</sub>N<sub>4</sub>, which promotes efficient charge separation and suppresses electron-hole recombination via electron trap centers.

*Keywords*: composite materials, photocatalytic activity, hydrothermal method, semiconductor, heterojunction.

## 1. Introduction

Bismuth tungstate (Bi<sub>2</sub>WO<sub>6</sub>) has emerged as a promising visible-light-driven photocatalyst owing to its narrow band gap and excellent chemical stability [1]-[5]. These properties make it a potential candidate for environmental remediation applications such as wastewater treatment. However, its practical performance is hindered by the rapid

recombination of photogenerated electron-hole pairs, which significantly reduces its photocatalytic efficiency [6], [7]. To address this limitation, various strategies have been explored to enhance the photocatalytic activity of Bi<sub>2</sub>WO<sub>6</sub>, including elemental doping and composite formation [8]-[10]. Elemental doping has been achieved by substituting Bi with metal ions such as Ag [11] or Fe [10], replacing W with Mo [12], or introducing nonmetal dopants such as fluorine and nitrogen [13], [14]. Another effective approach involves constructing heterojunctions by combining Bi<sub>2</sub>WO<sub>6</sub> with other semiconductors e.g., BiVO<sub>4</sub> [15], [16], TiO<sub>2</sub> [17], [18], MoS<sub>2</sub> [19], and g-C<sub>3</sub>N<sub>4</sub> [20], [21].

Among various semiconductors, graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) stands out due to its visible-light responsiveness, thermal stability and tunable electronic structure. When coupled with Bi<sub>2</sub>WO<sub>6</sub> - an n-type semiconductor - the resulting Bi<sub>2</sub>WO<sub>6</sub>/g-C<sub>3</sub>N<sub>4</sub> composite can form a heterojunction that facilitates effective charge separation and suppresses electron—hole recombination, thereby enhancing photocatalytic efficiency. Depending on the band alignment and interfacial structure, this heterostructure may operate via type-II, Z-scheme, or S-scheme mechanisms. Notably, heterojunction formation is highly sensitive to synthesis conditions, which influence morphology, crystallinity, and interfacial contact [21]-[25]. Although both microwave-assisted and hydrothermal methods have been individually employed in semiconductor synthesis, their combination remains underexplored. The microwave-assisted hydrothermal method offers synergistic advantages: uniform, rapid heating by microwaves and controlled crystal growth under hydrothermal conditions. This dual approach has shown promise for generating nanostructures with enhanced photocatalytic activity via improved interfacial contact and defect engineering.

In this study, Bi<sub>2</sub>WO<sub>6</sub>/g-C<sub>3</sub>N<sub>4</sub> composites with varying g-C<sub>3</sub>N<sub>4</sub> content (5%, 10%, 15% and 20% by weight) were synthesized using the combined microwave-hydrothermal route. This strategy promotes the formation of a direct Z-scheme heterojunction, which effectively improves charge-carrier separation while retaining strong redox potentials. The pristine Bi<sub>2</sub>WO<sub>6</sub> was also synthesized under identical conditions for comparison. The structural, morphological, and optical characteristics of the resulting materials were systematically analyzed, and their photocatalytic performance under simulated visible light was evaluated. Furthermore, a comparative analysis with previous reports was conducted to demonstrate the advantages of the adopted synthetic approach.

# 2. Content

# 2.1. Experimental methods

## 2.1.1. Chemicals and experimental equipment

Urea sourced from China was used as the precursor for synthesizing graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>), while bismuth nitrate pentahydrate (Bi(NO<sub>3</sub>)<sub>3</sub>·5H<sub>2</sub>O) and sodium tungstate dihydrate (Na<sub>2</sub>WO<sub>4</sub>·2H<sub>2</sub>O), both obtained from Sigma-Aldrich, were employed as precursors for Bi<sub>2</sub>WO<sub>6</sub> synthesis. The microwave system was adapted from a commercially available microwave oven with minor modifications to suit experimental requirements. A Nabertherm TR240 oven was employed for the heating process during the hydrothermal treatment.

# 2.1.2. Synthesis of g-C<sub>3</sub>N<sub>4</sub>

g-C<sub>3</sub>N<sub>4</sub> was synthesized via the thermal polymerization of urea in ambient air. Specifically, 5.0 g of urea was placed in a covered crucible and calcined at 500 °C for 5 h in a Nabertherm LH120 muffle furnace, using a heating rate of 10 °C min<sup>-1</sup>. The resulting yellow powder was collected and used without further purification.

# 2.1.3. Synthesis of Bi<sub>2</sub>WO<sub>6</sub>/g-C<sub>3</sub>N<sub>4</sub> composite

The Bi<sub>2</sub>WO<sub>6</sub>/g-C<sub>3</sub>N<sub>4</sub> composites were synthesized via a combined microwave-assisted hydrothermal method. Initially, 2.5 mmol of Na<sub>2</sub>WO<sub>4</sub>·2H<sub>2</sub>O and 5 mmol of Bi(NO<sub>3</sub>)<sub>3</sub>·5H<sub>2</sub>O were dissolved in 100 mL of deionized water and stirred for 30 min. Subsequently, the desired amount of pre-synthesized g-C<sub>3</sub>N<sub>4</sub> was added to achieve a target weight fraction of 0%, 5%, 10%, 15% or 20% relative to Bi<sub>2</sub>WO<sub>6</sub>. The mixture was ultrasonically treated for 30 min to ensure homogeneous dispersion. The suspension was then transferred to a 150 mL round-bottom flask and irradiated with microwaves at 750 W for 20 min. Following this step, the suspension was immediately transferred to a 100 mL Teflon-lined autoclave and subjected to hydrothermal treatment at 160 °C for 8 h. After cooling naturally to room temperature, the product was collected by centrifugation, washed four times with deionized water, and dried at 70 °C. The resulting powders - each corresponding to a specific g-C<sub>3</sub>N<sub>4</sub> content - were labeled as listed in Table 1.

Table 1. Notation of  $Bi_2WO_6/g$ - $C_3N_4$  samples synthesized with different g- $C_3N_4$  fractions

| Samples  | Pristine<br>Bi <sub>2</sub> WO <sub>6</sub> | $\begin{array}{c} Bi_2WO_6/\\ g\text{-}C_3N_4\\ with 5 wt\%\\ g\text{-}C_3N_4 \end{array}$ | Bi <sub>2</sub> WO <sub>6</sub> /<br>g-C <sub>3</sub> N <sub>4</sub><br>with 10 wt%<br>g-C <sub>3</sub> N <sub>4</sub> | Bi <sub>2</sub> WO <sub>6</sub> /<br>g-C <sub>3</sub> N <sub>4</sub><br>with 15 wt%<br>g-C <sub>3</sub> N <sub>4</sub> | Bi <sub>2</sub> WO <sub>6</sub> /<br>g-C <sub>3</sub> N <sub>4</sub><br>with 20 wt%<br>g-C <sub>3</sub> N <sub>4</sub> |
|----------|---------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Notation | Bi <sub>2</sub> WO <sub>6</sub>             | 5% g-C <sub>3</sub> N <sub>4</sub>                                                         | 10% g-C <sub>3</sub> N <sub>4</sub>                                                                                    | 15% g-C <sub>3</sub> N <sub>4</sub>                                                                                    | 20% g-C <sub>3</sub> N <sub>4</sub>                                                                                    |

#### 2.1.4. Material characterization methods

The crystalline phases of the synthesized materials were identified using X-ray diffraction (XRD; Bruker D5005). The morphology of the samples was observed by scanning electron microscopy (SEM; Hitachi S-4800). The optical absorption properties were studied by UV-Vis diffuse reflectance spectroscopy (DRS; Jasco V-670). The specific surface area was measured by the Brunauer-Emmett-Teller (BET) method using a Micromeritics TriStar 3000 instrument. Photoluminescence (PL) spectra were recorded on a Horiba FluoroMax-4 spectrofluorometer, excited by a 325 nm He–Cd laser.

# 2.1.5. Experimental evaluation of photocatalytic properties of the materials

Photocatalytic performance was evaluated by monitoring the degradation of Rhodamine B (RhB) under visible-light irradiation. A 300 W xenon lamp equipped with a cutoff filter ( $\lambda$  < 400 nm) was used to simulate sunlight. In each experiment, 0.10 g of photocatalyst was dispersed in 100 mL of  $10^{-5}$  M RhB solution. The mixture was stirred in the dark for 3 h to reach adsorption-desorption equilibrium. Upon illumination, 5 mL aliquots were withdrawn every 30 min, centrifuged to remove catalyst particles, and analyzed by UV-Vis spectroscopy. Photodegradation efficiency was determined by tracking the decrease in absorbance at approximately 560 nm, corresponding to the characteristic RhB peak.

## 2.2. Results and discussion

Figure 1a shows the XRD patterns of pristine  $Bi_2WO_6$ , pristine  $g-C_3N_4$ , and  $Bi_2WO_6/g-C_3N_4$  composites with 5%, 10%, 15% and 20%  $g-C_3N_4$ . The  $g-C_3N_4$  sample displays two characteristic diffraction peaks at  $2\theta = 27.4^{\circ}$  and  $\approx 13^{\circ}$ , corresponding to the (002) and (100) planes of the graphitic carbon nitride structure, in agreement with JCPDS 87-1526 [26]. These peaks confirm the successful synthesis of  $g-C_3N_4$ .

For both pristine  $Bi_2WO_6$  and the composite samples, distinct diffraction peaks appear at  $2\theta = 28.3^{\circ}$ ,  $32.7^{\circ}$ ,  $47.1^{\circ}$ ,  $55.9^{\circ}$  and  $58.2^{\circ}$ , which can be indexed to the (131), (200), (202), (113) and (262) planes of orthorhombic  $Bi_2WO_6$ , consistent with its known crystal structure. The absence of additional peaks in the composite samples indicates that the  $Bi_2WO_6$  crystal phase remains intact after compositing with g-C<sub>3</sub>N<sub>4</sub>.

Interestingly, no diffraction peaks attributable to g-C<sub>3</sub>N<sub>4</sub> are observed in the composites. This is likely due to the weak and broad nature of the g-C<sub>3</sub>N<sub>4</sub> signals, which are overshadowed by the more intense Bi<sub>2</sub>WO<sub>6</sub> peaks, particularly at low g-C<sub>3</sub>N<sub>4</sub> loadings. Similar observations have been reported previously, where low g-C<sub>3</sub>N<sub>4</sub> content renders its diffraction signals undetectable in composite XRD patterns [27].

A detailed analysis of the diffraction peaks at specific  $2\theta$  angles, particularly the peak at  $28.30^{\circ}$  (Figure 1b), reveals no observable shift. This indicates that incorporation of g-C<sub>3</sub>N<sub>4</sub> does not significantly affect the crystal structure of the Bi<sub>2</sub>WO<sub>6</sub> host material.

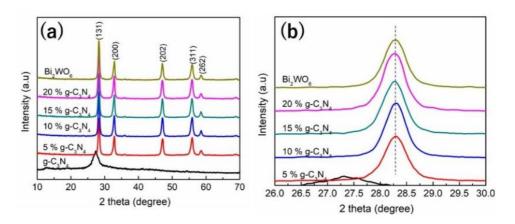



Figure 1. XRD patterns of pristine  $Bi_2WO_6$ ,  $Bi_2WO_6/g$ - $C_3N_4$  composites with 5%, 10%, 15%, 20% g- $C_3N_4$ , and pure g- $C_3N_4$  (a); enlarged view of the (131) peak at 28.30° for the composites with varying g- $C_3N_4$  contents (b)

Figure 2 presents SEM images of (a) pristine Bi<sub>2</sub>WO<sub>6</sub>, (b) a Bi<sub>2</sub>WO<sub>6</sub>/g-C<sub>3</sub>N<sub>4</sub> composite containing 10 wt% g-C<sub>3</sub>N<sub>4</sub>, and (c) pure g-C<sub>3</sub>N<sub>4</sub>. The SEM image of g-C<sub>3</sub>N<sub>4</sub> (Figure 2c) reveals its characteristic porous, layered morphology, typical of graphitic carbon nitride. In contrast, the pristine Bi<sub>2</sub>WO<sub>6</sub> sample (Figure 2a) consists of plate-like crystallites aggregated into flower-like microscale structures, with clusters several micrometers in size. For the Bi<sub>2</sub>WO<sub>6</sub>/g-C<sub>3</sub>N<sub>4</sub> composite with 10 wt% g-C<sub>3</sub>N<sub>4</sub> (Figure 2b), the morphology changes significantly: the Bi<sub>2</sub>WO<sub>6</sub> plates are smaller, more randomly oriented, and less aggregated, resulting in the absence of the distinct flower-like structure observed in pristine Bi<sub>2</sub>WO<sub>6</sub>.

These morphological differences can be attributed to the presence of g-C<sub>3</sub>N<sub>4</sub> during synthesis. As Bi<sub>2</sub>WO<sub>6</sub> nucleates and grows, the g-C<sub>3</sub>N<sub>4</sub> sheets provide a scaffold that hinders the self-assembly of Bi<sub>2</sub>WO<sub>6</sub> into tightly packed clusters. Instead, the Bi<sub>2</sub>WO<sub>6</sub> crystallites distribute more uniformly across the g-C<sub>3</sub>N<sub>4</sub> layers, leading to a more open, porous structure. In addition to morphological analysis, the specific surface area of the samples was measured by the BET method. As summarized in Table 2, pure g-C<sub>3</sub>N<sub>4</sub> exhibits the highest surface area, while pristine Bi<sub>2</sub>WO<sub>6</sub> shows the lowest. Notably, the surface area of the composites increases with g-C<sub>3</sub>N<sub>4</sub> content. This enhancement in surface area is beneficial for photocatalysis, as it provides more active sites and improves interactions between the photocatalyst and pollutant molecules, thereby enhancing photocatalytic performance.

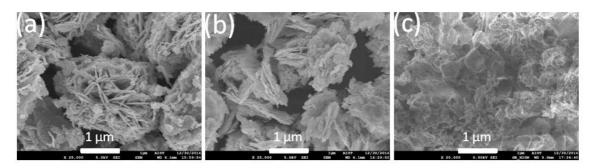



Figure 2. SEM images of (a) pristine  $Bi_2WO_6$ , (b)  $Bi_2WO_6/g$ - $C_3N_4$  composite with 10% g- $C_3N_4$ , and (c) pure g- $C_3N_4$ 

Figure 3a shows the UV-Vis diffuse reflectance spectra of pristine Bi<sub>2</sub>WO<sub>6</sub>, Bi<sub>2</sub>WO<sub>6</sub>/g-C<sub>3</sub>N<sub>4</sub> composites with varying g-C<sub>3</sub>N<sub>4</sub> contents (5%, 10%, 15% and 20%), and pure g-C<sub>3</sub>N<sub>4</sub>. The pristine Bi<sub>2</sub>WO<sub>6</sub> sample has an absorption edge around 430 nm, characteristic of its visible-light absorption. In contrast, pure g-C<sub>3</sub>N<sub>4</sub> shows a red-shifted absorption edge near 500 nm. Notably, the Bi<sub>2</sub>WO<sub>6</sub>/g-C<sub>3</sub>N<sub>4</sub> composites display absorption edges that gradually shift toward longer wavelengths with increasing g-C<sub>3</sub>N<sub>4</sub> content, indicating a narrowing of the effective bandgap as the material's optical response approaches that of g-C<sub>3</sub>N<sub>4</sub>. Additionally, an enhanced baseline absorption in the 500 - 800 nm range is observed for the composites but is absent in pristine Bi<sub>2</sub>WO<sub>6</sub>. This broader absorption suggests improved light-harvesting capabilities due to synergistic interactions between the two components. To quantify the optical bandgap, the Kubelka-Munk transformation was applied to the reflectance spectra (Figure 3b). The extracted bandgap values are summarized in Table 2. The data clearly indicate that the optical band gaps of the Bi<sub>2</sub>WO<sub>6</sub>/g-C<sub>3</sub>N<sub>4</sub> composites are significantly reduced compared to those of the individual materials, confirming enhanced visible-light absorption. The observation that the composites display a single red-shifted absorption edge, rather than a simple overlay of the spectra of Bi<sub>2</sub>WO<sub>6</sub> and g-C<sub>3</sub>N<sub>4</sub>, suggests the formation of a well-integrated heterojunction. This interfacial coupling likely facilitates efficient charge transfer and separation, thereby improving photocatalytic performance.

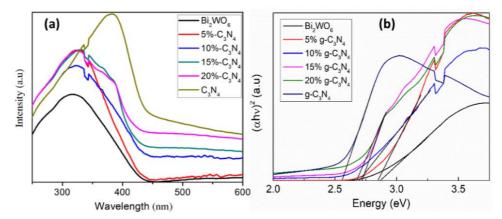



Figure 3. (a) UV-Vis diffuse reflectance spectra and (b) corresponding Kubelka-Munk plots for pristine Bi<sub>2</sub>WO<sub>6</sub>, pure g-C<sub>3</sub>N<sub>4</sub>, and Bi<sub>2</sub>WO<sub>6</sub>/g-C<sub>3</sub>N<sub>4</sub> composites containing 5%, 10%, 15%, and 20% g-C<sub>3</sub>N<sub>4</sub> by weight

The photocatalytic performance of the prepared samples was evaluated by monitoring the degradation of Rhodamine B (RhB) under visible-light irradiation ( $\lambda$  > 400 nm). As shown in Figure 4a, the RhB concentration determined by measuring the absorbance at 550 nm decreases progressively with irradiation time in the presence of both Bi<sub>2</sub>WO<sub>6</sub>/g-C<sub>3</sub>N<sub>4</sub> composites and pristine Bi<sub>2</sub>WO<sub>6</sub>. While all samples exhibit photocatalytic activity under visible light, the composites demonstrate markedly enhanced performance compared to pristine Bi<sub>2</sub>WO<sub>6</sub>. The degradation efficiency depends on the g-C<sub>3</sub>N<sub>4</sub> content: among the tested compositions, the sample containing 10 wt % g-C<sub>3</sub>N<sub>4</sub> shows the most efficient behavior, achieving nearly complete degradation of a 10 ppm RhB solution within 60 min. In contrast, pristine Bi<sub>2</sub>WO<sub>6</sub> displays significantly lower degradation under identical conditions. These results highlight the beneficial role of g-C<sub>3</sub>N<sub>4</sub> in enhancing the photocatalytic activity of the Bi<sub>2</sub>WO<sub>6</sub>-based composites under visible-light illumination.

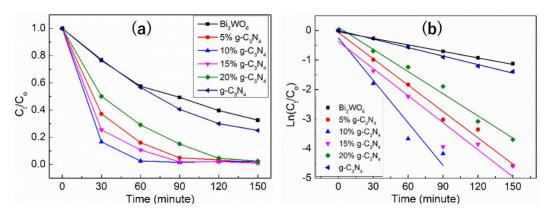



Figure 4. (a) Decolorization of RhB (decrease in 550 nm peak intensity) as a function of irradiation time for Bi<sub>2</sub>WO<sub>6</sub>/g-C<sub>3</sub>N<sub>4</sub> composites under visible light; (b) Corresponding first-order kinetic plots for RhB degradation with each sample

83

To gain deeper insight into the degradation process, the reaction kinetics were analyzed using the Langmuir-Hinshelwood model. The RhB degradation was fitted to a pseudo-first-order kinetic equation:  $\ln(C_t/C_0) = k't$ , where  $C_0$  is the initial dye concentration,  $C_t$  is the concentration at time t, and k' is the apparent first-order rate constant. Figure 4b presents the linearized kinetic plots for each sample, and the corresponding k' values are listed in Table 2. Among all the samples, the  $Bi_2WO_6/g-C_3N_4$  composite with 10% g- $C_3N_4$  exhibits the highest rate constant, approximately seven times greater than that of pristine  $Bi_2WO_6$ . Interestingly, this composite does not possess the highest specific surface area, indicating that the enhanced activity is not solely due to increased surface area. Instead, the significant improvement can be attributed to the formation of an effective heterojunction between  $Bi_2WO_6$  and  $g-C_3N_4$ , which facilitates charge separation and transfer. Additionally, the incorporation of  $g-C_3N_4$  may introduce surface defects, such as oxygen vacancies, which further enhance photocatalytic performance by suppressing charge recombination and improving visible-light absorption.

Table 2. Band gap, specific area and RhB degradation rate constants for  $Bi_2WO_6/g$ - $C_3N_4$  composites with various g- $C_3N_4$  contents

| J. 1211 - 4 3 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1   |                                             |                                       |                                        |                                        |                                        |                                 |  |
|-------------------------------------------------------|---------------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|---------------------------------|--|
| Samples                                               | Pristine<br>Bi <sub>2</sub> WO <sub>6</sub> | 5%<br>g-C <sub>3</sub> N <sub>4</sub> | 10%<br>g-C <sub>3</sub> N <sub>4</sub> | 15%<br>g-C <sub>3</sub> N <sub>4</sub> | 20%<br>g-C <sub>3</sub> N <sub>4</sub> | g-C <sub>3</sub> N <sub>4</sub> |  |
| Band gap (eV)                                         | 2.87                                        | 2.85                                  | 2.70                                   | 2.70                                   | 2.67                                   | 2.56                            |  |
| Specific surface area (m²/g)                          | 15.37                                       | 16.01                                 | 18.14                                  | 20.06                                  | 21.76                                  | 83.08                           |  |
| RhB<br>degradation<br>rate k'<br>(min <sup>-1</sup> ) | 0.0074                                      | 0.0297                                | 0.0479                                 | 0.0305                                 | 0.0250                                 | 0.0096                          |  |

Figure 5 shows the photoluminescence (PL) spectra of pristine Bi<sub>2</sub>WO<sub>6</sub>, pure g-C<sub>3</sub>N<sub>4</sub>, and Bi<sub>2</sub>WO<sub>6</sub>/g-C<sub>3</sub>N<sub>4</sub> composites with 5%, 10%, 15%, and 20% g-C<sub>3</sub>N<sub>4</sub>. The results indicate that pristine Bi<sub>2</sub>WO<sub>6</sub> exhibits a strong emission peak around 544 nm, which is attributed to the radiative transition from the Bi 6s/O 2p hybrid orbitals in the valence band to the W 5d orbital in the conduction band of the [WO<sub>6</sub>]<sup>2-</sup> complex [25]. In contrast, all Bi<sub>2</sub>WO<sub>6</sub>/g-C<sub>3</sub>N<sub>4</sub> composites show significantly reduced PL intensity compared to pristine Bi<sub>2</sub>WO<sub>6</sub>, indicating a lower recombination rate of photoexcited electron-hole pairs. Since PL emission arises from the recombination of these charge carriers, a lower PL intensity reflects more efficient charge separation. Among the composites, the 10% g-C<sub>3</sub>N<sub>4</sub> sample exhibits the weakest PL signal, which corresponds well with its superior photocatalytic performance. This correlation supports the conclusion that suppressed electron-hole recombination, evidenced by lower PL emission, is a key factor contributing to the enhanced photocatalytic activity in Bi<sub>2</sub>WO<sub>6</sub>/g-C<sub>3</sub>N<sub>4</sub> composites.

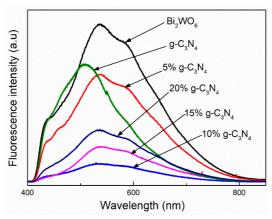



Figure 5. Photoluminescence (PL) spectra of pure  $g-C_3N_4$ ,  $Bi_2WO_6/g-C_3N_4$  composites with 5%, 10%, 15%, 20%  $g-C_3N_4$ , and pristine  $Bi_2WO_6$ 

To elucidate the mechanism underlying the enhanced photocatalytic performance, we compared the photocatalytic activities and fabrication methods of various  $Bi_2WO_6/g$ - $C_3N_4$ -based composites, as summarized in Table 3.

Table 3. Comparison of the photocatalytic performance and fabrication methods of Bi<sub>2</sub>WO<sub>6</sub>/g-C<sub>3</sub>N<sub>4</sub>-based composites

| Enhancement                                                                     |                     |                           |                                                      |                                                           |                          |           |
|---------------------------------------------------------------------------------|---------------------|---------------------------|------------------------------------------------------|-----------------------------------------------------------|--------------------------|-----------|
| Composite materials                                                             | Band<br>gap<br>(eV) | Surface<br>area<br>(m²/g) | Preparation<br>method                                | activity compared to pure Bi <sub>2</sub> WO <sub>6</sub> | Photocatalytic mechanism | Reference |
| $C_3N_4$ /Bi <sub>2</sub> WO <sub>6</sub>                                       | 2.63                | 42.2                      | Hydrotherma<br>l method                              | 2.7                                                       | Heterojunction           | [28]      |
| Bi <sub>2</sub> WO <sub>6</sub> /g-<br>C <sub>3</sub> N <sub>4</sub>            | 2.6                 | -                         | Hydrotherma<br>l method                              | 1.94                                                      | Hetorojunction           | [29]      |
| C <sub>3</sub> N <sub>4</sub><br>/Bi <sub>2</sub> WO <sub>6</sub>               | 2.54                | -                         | Hydrotherma<br>l method                              | 8.4                                                       | Z scheme                 | [30]      |
| CdS<br>QDs/Bi <sub>2</sub> W<br>O <sub>6</sub> /g-C <sub>3</sub> N <sub>4</sub> | 2.56                | 60.4                      | Hydrotherma<br>l method                              | 8                                                         | Z scheme                 | [31]      |
| Bi <sub>2</sub> WO <sub>6</sub> /g-<br>C <sub>3</sub> N <sub>4</sub>            | 2.62                | -                         | Hydrotherma<br>l method                              | 6                                                         | Z-scheme                 | [32]      |
| Bi <sub>2</sub> WO <sub>6</sub> /g-<br>C <sub>3</sub> N <sub>4</sub>            | 2.5                 | -                         | Hydrotherma<br>l method                              | 5                                                         | S-scheme                 | [33]      |
| Bi <sub>2</sub> WO <sub>6</sub> /g-<br>C <sub>3</sub> N <sub>4</sub>            | 2.7                 | 20.6                      | Microwave<br>assisted and<br>Hydrotherma<br>l method | 7                                                         | Z-scheme                 | This work |

The results indicate that the composite containing 10 wt % g-C<sub>3</sub>N<sub>4</sub>-synthesized via a microwave-assisted hydrothermal method exhibits a degradation rate approximately seven times higher than that of pristine Bi<sub>2</sub>WO<sub>6</sub>. This enhancement is comparable to or exceeds the performance reported for other Z-scheme systems. In addition, PL measurements reveal significant suppression of PL emission intensity in this sample, suggesting more effective separation of photogenerated electron–hole pairs. These findings provide strong evidence supporting the formation of a Z-scheme heterojunction as the dominant charge-transfer pathway in our composite system.

The mechanism of photocatalytic enhancement can be interpreted based on possible charge-transfer models. Under visible-light irradiation, both Bi<sub>2</sub>WO<sub>6</sub> and g-C<sub>3</sub>N<sub>4</sub> absorb photons and generate electron-hole pairs via excitation from their valence bands (VB) to their conduction bands (CB). One commonly proposed mechanism is the type-II heterojunction, in which photoexcited electrons in the CB of g-C<sub>3</sub>N<sub>4</sub> migrate to the CB of Bi<sub>2</sub>WO<sub>6</sub>, while holes in the VB of Bi<sub>2</sub>WO<sub>6</sub> transfer to the VB of g-C<sub>3</sub>N<sub>4</sub>. This configuration facilitates charge separation but compromises the strong redox potentials of the individual components, typically leading to only moderate photocatalytic enhancement-approximately twofold relative to pure Bi<sub>2</sub>WO<sub>6</sub> [28], [29]. In contrast, the Z-scheme heterojunction, illustrated in Figure 6, provides a more favorable chargetransfer pathway. In this configuration, electrons in the CB of Bi<sub>2</sub>WO<sub>6</sub> recombine with holes in the VB of g-C<sub>3</sub>N<sub>4</sub> at the interface, thereby retaining the high-energy electrons in the CB of g-C<sub>3</sub>N<sub>4</sub> and the strongly oxidative holes in the VB of Bi<sub>2</sub>WO<sub>6</sub>. This selective recombination not only maintains the high redox potentials of both semiconductors but also effectively suppresses charge recombination. As a result, the Z-scheme architecture significantly boosts photocatalytic activity. Consistent with our findings, previous reports have shown that Z-scheme systems can achieve more than a sixfold enhancement in photocatalytic performance compared to pristine Bi<sub>2</sub>WO<sub>6</sub> [30]-[33].

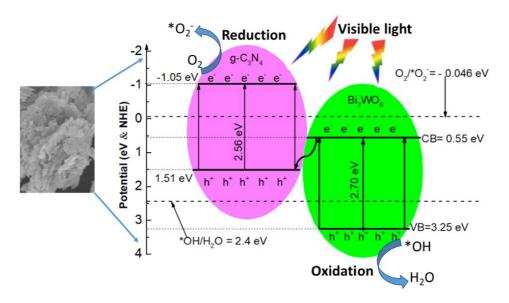



Figure 6. Proposed photocatalytic mechanism over the Bi<sub>2</sub>WO<sub>6</sub>/g-C<sub>3</sub>N<sub>4</sub> composite

## 3. Conclusions

In this study, Bi<sub>2</sub>WO<sub>6</sub>/g-C<sub>3</sub>N<sub>4</sub> composites with varying g-C<sub>3</sub>N<sub>4</sub> contents were synthesized via a microwave-assisted hydrothermal method and systematically characterized. The incorporation of g-C<sub>3</sub>N<sub>4</sub> significantly altered the morphology, optical absorption, and electronic structure of Bi<sub>2</sub>WO<sub>6</sub>, leading to an enhanced visible-light response and a reduced band-gap energy. Photoluminescence and photocatalytic analyses revealed that the composites exhibited suppressed electron-hole recombination and markedly improved RhB degradation compared with pristine Bi<sub>2</sub>WO<sub>6</sub>. Among the composites, the 10 % g-C<sub>3</sub>N<sub>4</sub> sample demonstrated the highest activity, degrading RhB almost completely within 60 min-approximately seven times faster than pure Bi<sub>2</sub>WO<sub>6</sub>. The enhanced performance is attributed to the formation of a direct Z-scheme heterojunction between Bi<sub>2</sub>WO<sub>6</sub> and g-C<sub>3</sub>N<sub>4</sub>, which promotes efficient charge separation while maintaining strong redox potentials. These findings highlight the potential of Bi<sub>2</sub>WO<sub>6</sub>/g-C<sub>3</sub>N<sub>4</sub> composites as effective visible-light-driven photocatalysts for environmental remediation.

*Acknowledgments.* This research was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 103.02-2021.80.

#### REFERENCES

- [1] Wan G & Wang G, (2014). Synthesis of Bi<sub>2</sub>WO<sub>6</sub> microspheres with visible-light-driven photocatalytic properties. *International Journal of Nanoscience*, 12. DOI: 10.1142/S0219581X1350035X.
- [2] Yan Y, Wu Y, Yan Y, Guan W & Shi W, (2013). Inorganic-salt-assisted morphological evolution and visible-light-driven photocatalytic performance of Bi<sub>2</sub>WO<sub>6</sub> nanostructures. *Journal of Physical Chemistry C*, 117, 20017-20028. DOI:10.1021/JP406574Y.
- [3] Chen Y, Zhang L, Chen S, Sun S, Cheng H, Li S, Yu J, Ding B, & Yan J, (2024). Synthesis of Heteromorphic Bi<sub>2</sub>WO<sub>6</sub> Films With an Interpenetrate 1D/2D Network Structure for Efficient and Stable Photocatalytic Degradation of VOCs. *Advanced Materials*, 36, 2407400. DOI:10.1002/ADMA.202407400.
- [4] Rajan G, Rajput RB, Shaikh RS & Kale RB, (2025). Hydrothermally engineered highly active Bi<sub>2</sub>WO<sub>6</sub> photocatalyst for the degradation of Rhodamine B, Bisphenol A and dye mixture under visible light irradiation. *Inorganic Chemistry Communications*, 177, 114430. DOI:10.1016/J.INOCHE.2025.114430.
- [5] Yaghoobi-Rahni S, Younesi H, Bahramifar N, Yang H & Karimi-Maleh H, (2025). One-step hydrothermal process for fabrication of Bi<sub>2</sub>WO<sub>6</sub>/basic bismuth nitrate heterojunction with improved photocatalytic efficacy under visible light. *Journal of Hazardous Materials Advances*, 17, 100624. DOI: 10.1016/J.HAZADV.2025.100624.
- [6] Shad NA, Zahoor M, Bano K, Bajwa SZ, Amin N, Ihsan A, Soomro RA, Ali A, Imran Arshad M, Wu A, Iqbal MZ & Khan WS, (2017). Synthesis of flake-like bismuth tungstate (Bi<sub>2</sub>WO<sub>6</sub>) for photocatalytic degradation of coomassie brilliant

- blue (CBB). *Inorganic Chemistry Communications*, 86, 213-217. DOI: 10.1016/J.INOCHE.2017.10.022.
- [7] Nguyen DP, Luc HH, Chen XB, Kong MH, Wen HC & Chou WC, (2015). Study of photocatalytic activities of Bi<sub>2</sub>WO<sub>6</sub> nanoparticles synthesized by fast microwave-assisted method. *Journal of Alloys and Compounds*, 647, 123-128. DOI: 10.1016/J.JALLCOM.2015.06.047.
- [8] Shi J, Zhao T, Yang T, Pu K, Shi J, Zhou A, Li H, Wang S & Xue J, (2024). Z-scheme heterojunction photocatalyst formed by MOF-derived C-TiO<sub>2</sub> and Bi<sub>2</sub>WO<sub>6</sub> for enhancing degradation of oxytetracycline: Mechanistic insights and toxicity evaluation in the presence of a single active species. *Journal of Colloid and Interface Science*, 665, 41-59. DOI: 10.1016/J.JCIS.2024.03.100.
- [9] Qin Z, Zhu L, Ge X, Li C, Wang X & Liu X, (2025). Flower-spherical Ag-Bi<sub>2</sub>WO<sub>6</sub> photocatalytic degradation of sulfamethazine. *Inorganic Chemistry Communications*, 171, 113618. DOI: 10.1016/J.INOCHE.2024.113618.
- [10] Nguyen PH, Nguyen TQ, Vo TTN, Cao TM & Pham VV, (2025). Advanced oxidation processes over Fe-doped Bi<sub>2</sub>WO<sub>6</sub> photocatalysts toward rhodamine B and cefalexin treatment. *Journal of Science: Advanced Materials and Devices*, 10(1), 100815. DOI: 10.1016/J.JSAMD.2024.100815.
- [11] Nguyen DP, Luc HH, Pham VH, Tran QH, Chen XB & Chou WC, (2020). Photocatalytic activity enhancement of Bi<sub>2</sub>WO<sub>6</sub> nanoparticles by Ag doping and Ag nanoparticles modification. *Journal of Alloys and Compounds*, 824, 153914. DOI: 10.1016/J.JALLCOM.2020.153914.
- [12] Rana A, Sonu S, Soni V, Chawla A, Sudhaik A, Raizada P, Ahamad T, Thakur P, Thakur S & Singh P, (2025). Novel S-scheme derived Mo–Bi<sub>2</sub>WO<sub>6</sub>/WO<sub>3</sub>/Biochar composite for photocatalytic removal of Methylene Blue dye. *Journal of Physics and Chemistry of Solids*, 196, 112385. DOI: 10.1016/J.JPCS.2024.112385.
- [13] Yang ZL, Zeng HY, Xiong J, Peng DY & Liu SG, (2023). F-doped Bi<sub>2</sub>WO<sub>6</sub> with rich oxygen vacancies for boosting photo-oxidation/reduction activity. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 675 132035. DOI: 10.1016/J.COLSURFA.2023.132035.
- [14] Luc HH, Nguyen DP, Peng H & Chen XB, (2018). High photocatalytic activity N-doped Bi<sub>2</sub>WO<sub>6</sub> nanoparticles using a two-step microwave-assisted and hydrothermal synthesis. *Journal of Alloys and Compounds*, 744 228-233. DOI: 10.1016/J.JALLCOM.2018.02.094.
- [15] Nguyen DP, Luc HH, Guo PC, Chen XB & Wu CC, (2017). Study of photocatalytic activities of Bi<sub>2</sub>WO<sub>6</sub>/BiVO<sub>4</sub> nanocomposites, *Journal of Sol-Gel Science and Technology*, 83, 640-646. DOI: 10.1007/S10971-017-4450-8.
- [16] Segovia-Sandoval SJ, Mendoza-Mendoza E, Jacobo-Azuara A, Jiménez-López BA & Hernández-Arteaga AC, (2024). Highly efficient visible-LED-driven photocatalytic degradation of tetracycline and rhodamine B over Bi<sub>2</sub>WO<sub>6</sub>/BiVO<sub>4</sub> heterostructures decorated with silver and graphene synthesized by a novel green method. *Environmental Science and Pollution Research*, 31(28), 39945-39960. DOI: 10.1007/S11356-023-27731-6.

- [17] Shen T, Zeng D, Liu Z, Hu Y, Tian Y, Song J, Yang T, Guan R & Zhou C, (2024). S-scheme Bi/Bi<sub>2</sub>WO<sub>6</sub>/TiO<sub>2</sub> nanofiber photocatalyst for efficient degradation of sulfamethoxazole. *Separation and Purification Technology*, 351 128130. DOI: 10.1016/J.SEPPUR.2024.128130.
- [18] Kumar A, Singla Y, Sharma M, Bhardwaj A & Krishnan V, (2022). Two dimensional S-scheme Bi<sub>2</sub>WO<sub>6</sub>–TiO<sub>2</sub>–Ti<sub>3</sub>C<sub>2</sub> nanocomposites for efficient degradation of organic pollutants under natural sunlight. *Chemosphere*, 308, 136212. DOI: 10.1016/J.CHEMOSPHERE.2022.136212.
- [19] Dai W, Yu J, Deng Y, Hu X, Wang T & Luo X, (2017). Facile synthesis of MoS<sub>2</sub>/Bi<sub>2</sub>WO<sub>6</sub> nanocomposites for enhanced CO<sub>2</sub> photoreduction activity under visible light irradiation. *Applied Surface Science*, 403, 230-239. DOI: 10.1016/J.APSUSC.2017.01.171.
- [20] Zhang B, Liu Y, Wang D, He W, Fang X, Zhao C, Pan J, Liu D, Liu S, Chen T, Zhao L & Wang J, (2025). Nanoengineering construction of g-C<sub>3</sub>N<sub>4</sub>/Bi<sub>2</sub>WO<sub>6</sub> S-scheme heterojunctions for cooperative enhanced photocatalytic CO<sub>2</sub> reduction and pollutant degradation. *Separation and Purification Technology*, 354, 128893. DOI: 10.1016/J.SEPPUR.2024.128893.
- [21] Li H, Li N, Wang M, Zhao B & Long F, (2018). Synthesis of novel and stable g-C<sub>3</sub>N<sub>4</sub>-Bi<sub>2</sub>WO<sub>6</sub> hybrid nanocomposites and their enhanced photocatalytic activity under visible light irradiation. *Royal Society Open Science*, 5(3), DOI: 10.1098/RSOS.171419.
- [22] Lian X, Xue W, Dong S, Liu E, Li H & Xu K, (2021). Construction of S-scheme Bi<sub>2</sub>WO<sub>6</sub>/g-C<sub>3</sub>N<sub>4</sub> heterostructure nanosheets with enhanced visible-light photocatalytic degradation for ammonium dinitramide. *Journal of Hazardous Materials*, 412, 125217. DOI: 10.1016/J.JHAZMAT.2021.125217.
- [23] Qi S, Zhang R, Zhang Y, Liu X & Xu H, (2021). Preparation and photocatalytic properties of Bi<sub>2</sub>WO<sub>6</sub>/g-C<sub>3</sub>N<sub>4</sub>. *Inorganic Chemistry Communications*, 132, 108761. DOI: 10.1016/J.INOCHE.2021.108761.
- [24] Masoud A, Ahmed MA, Kühn F & Bassioni G, (2023). Nanosheet g-C<sub>3</sub>N<sub>4</sub> enhanced by Bi<sub>2</sub>MoO<sub>6</sub> for highly efficient photocatalysts toward photodegradation of Rhodamine-B dye. *Heliyon*, 9(11). DOI: 10.1016/J.HELIYON.2023.E22342.
- [25] Cao D, Su N, Wang X, Wang X, Xu C, Liu Z, Li J & Lu C, (2024). Construction of unique floating Bi<sub>2</sub>WO<sub>6</sub>/g-C<sub>3</sub>N<sub>4</sub> S-scheme heterojunction to promote photocatalytic activity. *Journal of Environmental Chemical Engineering*, 12(3), 112939. DOI: 10.1016/J.JECE.2024.112939.
- [26] Wen J, Xie J, Chen X & Li X, (2017). A review on g-C<sub>3</sub>N<sub>4</sub>-based photocatalysts. *Applied Surface Science*, 391, 72-123. DOI: 10.1016/J.APSUSC.2016.07.030.
- [27] Ge L, Han C & Liu J, (2011). Novel visible light-induced g-C<sub>3</sub>N<sub>4</sub>/Bi<sub>2</sub>WO<sub>6</sub> composite photocatalysts for efficient degradation of methyl orange. *Applied Catalysis B: Environment and Energy*, 108, 100-107. DOI: 10.1016/J.APCATB.2011.08.014.
- [28] Wang J, Tang L, Zeng G, Deng Y, Liu Y, Wang L, Zhou Y, Guo Z, Wang J & Zhang C, (2017). Atomic scale g-C<sub>3</sub>N<sub>4</sub>/Bi<sub>2</sub>WO<sub>6</sub> 2D/2D heterojunction with enhanced

- photocatalytic degradation of ibuprofen under visible light irradiation. *Applied Catalysis B: Environment and Energy*, 209, 285-294. DOI: 10.1016/J.APCATB.2017.03.019.
- [29] Qi S, Zhang R, Zhang Y, Liu X & Xu H, (2021). Preparation and photocatalytic properties of Bi<sub>2</sub>WO<sub>6</sub>/g-C<sub>3</sub>N<sub>4</sub>. *Inorganic Chemistry Communications*, 132, 108761. DOI: 10.1016/J.INOCHE.2021.108761.
- [30] Zhang B, Liu Y, Wang D, He W, Fang X, Zhao C, Pan J, Liu D, Liu S, Chen T, Zhao L & Wang J, (2025). Nanoengineering construction of g-C<sub>3</sub>N<sub>4</sub>/Bi<sub>2</sub>WO<sub>6</sub> S-scheme heterojunctions for cooperative enhanced photocatalytic CO<sub>2</sub> reduction and pollutant degradation. *Separation and Purification Technology*, 354, 128893. DOI: 10.1016/J.SEPPUR.2024.128893.
- [31] Du Y, Li L, Tang Y, Li J, Guo Q & Yue G, (2025). Effective degradation of multiple antibiotics by 0D/3D/2D dual Z-heterojunction photocatalyst CdS QDs/Bi<sub>2</sub>WO<sub>6</sub>/g-C<sub>3</sub>N<sub>4</sub> and study of degradation mechanism. *Applied Surface Science*, 697, 163004. DOI: 10.1016/J.APSUSC.2025.163004.
- [32] Xiao X, Wei J, Yang Y, Xiong R, Pan C & Shi J, (2016). Photoreactivity and Mechanism of g-C<sub>3</sub>N<sub>4</sub> and Ag Co-Modified Bi<sub>2</sub>WO<sub>6</sub> Microsphere under Visible Light Irradiation. *ACS Sustainable Chemistry & Engineering Journal*, 4(6), 3017-3023. DOI: 10.1021/ACSSUSCHEMENG.5B01701.
- [33] Cao D, Su N, Wang X, Wang X, Xu C, Liu Z, Li J & Lu C, (2024). Construction of unique floating Bi<sub>2</sub>WO<sub>6</sub>/g-C<sub>3</sub>N<sub>4</sub> S-scheme heterojunction to promote photocatalytic activity. *Journal of Environmental Chemical Engineering*, 12(3), 112939. DOI: 10.1016/J.JECE.2024.112939.