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Abstract. The projection, also called the symmetrization mapping, from spectral
ball to symmetrized polydisc is closely related to the spectral Nevanlinna-Pick
interpolation problem. We prove that the rank of the derivative of the projection
from the spectral unit ball to the symmetrized polydisc is equal to the degree of
the minimal polynomial of the matrix at which we take the derivative. Therefore,
it explains why the corresponding lifting problem is easier when the matrix
base-point is cyclic since it is a regular point of the symmetrization mapping in
the differential sense.
Keywords: Nevanlinna-Pick, interpolation, symmetrized polydisc.

1. Introduction
In this note, we are interested in a special mapping in the spectral Nevanlinna-Pick

problem which is called the symmetrization mapping. First we present some notations.
Denote by Cn,n the set of complex square matrices of size n, where n is a positive

integer. For each matrix M ∈ Cn,n, the characteristic polynomial of M is defined as

PM(t) = det(tI −M) =
n∑

j=0

(−1)jσj(M)tn−j

where σ0(M) = 1 by convention, σj(M) are the coefficients of the characteristic
polynomial det(tI − M) and I is the identity matrix. The σj(M)′s are in fact the
elementary symmetric functions of the eigenvalues of M.

Put π(M) = (σ1(M), σ2(M), . . . , σn(M)) so we get a mapping π : Cn,n → Cn

which is called the symmetrization mapping.
Next we put

Ωn = {M ∈ Cn,n : r(M) < 1}
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where r(M) is the spectral radius of M. We call Ωn the spectral ball and its image

Gn = π(Ωn)

the symmetrized polydisc. This object is first introduced by Agler J and Young N [1]
to study spectral Nevanlinna-Pick problem, i.e., given α1, α2, . . . , αm ∈ D = {z ∈
C : |z| < 1} and A1, A2, . . . , Am ∈ Ωn, find conditions such that there exists a
holomorphic function Φ: D → Ωn with Φ(αj) = Aj for 1 ≤ j ≤ m.

Unfortunately, this problem is extremely difficult since Ωn has an unfriendly
geometry in comparison to the homogeneity of the disc or the unit ball in the classical
Nevanlinna-Pick interpolation problem. Therefore, Agler J and Young N propose a new
idea that instead of studying Ωn, they project Ωn onto Gn by symmetrization map and
this object is a bounded taut domain, so theoretically it is easier to deal with. Since
then, a lot of papers have appeared to study the symmetrized polydisc and give interesting
information.

In the inverse direction, we are interested in the lifting problem, i.e., if we can
realize interpolation in Gn, can we lift it to Ωn? A partial question has been resolved
in [2].

In this note, we are interested in the symmetrization mapping π : Ωn → Gn and
prove that the rank of the derivative π′(B) is equal to the degree of the polynomial of B
for any matrix B ∈ Ωn. This result explains in part why the lifting problem is always
realizable in [3].

2. Content
2.1. Notations and local lifting problem

For ε > 0, we denote by

Dε = {z ∈ C : |z| < ε}

the disc of radius ε.
For a vector v = (v1, v2, . . . , vn) ∈ Cn, put

P[v](t) =
n∑

j=0

(−1)jvjt
n−j

where v0 = 1. This notation ensures that

Pπ(M)(t) = det(tI −M)

for M ∈ Cn,n.

[local lifting problem] Given a holomorphic mapping φ : Dε → Gn and B ∈ Ωn

such that φ(0) = π(B). The local lifting problem for φ asks whether there exists a
holomorphic mapping Φ: Dε′ → Ωn such that 0 < ε′ < ε, Φ(0) = B and π ◦ Φ = φ.
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2.2. Main result

We will prove the following result in the remaining sections.
Consider the symmetrization mapping π : Ωn → Gn. Then for any B ∈ Ωn, we

have that the rank of the derivative of π at B is equal to the degree of the minimal
polynomial of B.

We recall here the definition of the minimal polynomial of a square matrix B ∈
Cn,n.

Let B ∈ Cn,n be a square matrix and P (t) be a complex polynomial in t. We say
that P (t) is the minimal polynomial of B if P (t) is of the smallest positive degree such
that P (B) = 0.

To prove this result, we have to make use of Jordan’s normal form which is recalled
in the next section.

2.3. Jordan normal form and notations

By taking conjugation if necessary, we can suppose B is in the Jordan normal form,
i.e., B is in the form of a block matrix where each block in the diagonal is an elementary
Jordan block corresponding to an eigenvalue. We always gather all the elementary Jordan
blocks corresponding to the same eigenvalue into a big Jordan block.

It means that B =


B1

B2

. . .
Bm

 where B1, B2, . . . , Bm are big Jordan

blocks corresponding to distinct eigenvalues λ1, λ2, . . . , λm. Temporarily, we fix an
eigenvalue λk and its block Bk and denote by (λ,B) (i.e. without ”k”).

So B here has only one eigenvalue, which is λ, and B is of size mλ, the algebraic
multiplicity of λ.

We suppose B is of the form
λ b1,2 0

λ b2,3
. . .

λ bmλ−1,mλ

λ


where the entries bj−1,j ∈ {0, 1} and all the blank entries are equal to zero.

Then we follow [2] and put

F λ
0 = {j : bj−1,j = 0} = {1 = b1 < b2 < . . . < bs}
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and suppose
b2 − b1 ≤ b3 − b2 ≤ . . . ≤ bs+1 − bs

where bs+1 = mλ + 1. This means we arrange the elementary Jordan blocks in B in an
increasing order of sizes from the left to the right.

Next put dλi = 1 +#(F λ
0 ∩ [mλ−i+2..mλ

]).

If Φ: Dε → Ωn is a holomorphic mapping with Φ(0) = B, and if φ = π ◦ Φ, then
we have

P
(k)
[φ(ζ)](λ) = O(ζ

dλmλ−k) for 0 ≤ k ≤ mλ − 1 (2.1)

where O is the big O Landau notation and P
(k)
[φ(ζ)] is the k−th derivative of the polynomial

with respect to its own variable (so ζ is the variable of φ). This computation follows from
the fact that

P
(k)
[φ(ζ)](λ) = k!σk(λI − Φ(ζ)).

The estimate in (2.1) was first stated and proved in [4].

2.4. Proof of the main result

Now we present the proof of Theorem 2.2.. As before, B can be replaced by any
similar matrix, so we can suppose B is in the Jordan normal form. Denote by m the degree
of the minimal polynomial of B. For each eigenvalue λ (without counting multiplicities)
of B, we denote by sλ the size of the biggest elementary Jordan block corresponding to λ

appearing in B. Then we have
m =

∑
λ∈Sp(B)

sλ

where Sp(B) is the spectrum of B. For the proof of this result, cf [5, Chapter 2, Corollary
2.3.12, page 31] or for the statement of the result (without proof), cf the Vietnamese
textbook [6, Chapter 5, Proposition 5.5.4, page 139].

To prove the equality rank(π′(B)) = m, we prove two inequalities and divide the
proof into two parts.

2.4.1. The rank is less than or equal to the degree

First, we prove rank(π′(B)) ≤ m. To do it, we prove that the image of π′(B) in
Cn is a vector subspace of dimension less than ≤ m. We realize this by showing that
this space is the solution set of a system of homogeneous linear equations with explicit
coefficients as follows.

Put Φ(ζ) = B + ζM for any M ∈ Cn,n and φ = π ◦ Φ. Then we have

φ′(0) = (π ◦ Φ)′(0) = π′(B)M.

Therefore, φ′(0) can be any vector in the image of π′(B).
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By (2.1), we have

P
(k)
[φ(ζ)](λ) = O(ζ

dλmλ−k) for 0 ≤ k ≤ mλ − 1.

Recall that P[φ(ζ)](t) =
∑n

j=0(−1)jφj(ζ)t
n−j with convention φ0(ζ) = 1.

Put v(t) = (−tn−1, tn−2, . . . , (−1)n−1t, (−1)n). For two complex vectors u =

(u1, u2, . . . , un) and v = (v1, v2, . . . , vn) ∈ Cn, put

u · v =
n∑

j=1

ujvj.

Then we have
P

(k)
[φ(ζ)](λ) = v(k)(λ) · φ(ζ).

Therefore
d

dζ
P

(k)
[φ(ζ)](λ) = v(k)(λ) · φ′(ζ).

So if dλmλ−k ≥ 2, then

0 =
d

dζ

∣∣∣∣∣
ζ=0

P
(k)
[φ(ζ)](λ) = v(k)(λ) · φ′(0). (2.2)

Consider dλmλ−k ≥ 2, this is equivalent to

F λ
0 ∩ [mλ − (mλ − k) + 2..mλ] ̸= ∅.

This means that bs ≥ k + 2, so k ∈ {0, 1, . . . , bs − 2}.
On the other hand, mλ − (bs − 1) = sλ is the size of the biggest elementary Jordan

block corresponding to λ appearing in B. We then obtain n − m homogeneous linear
equations of the type (2.2) for φ′(0).

The final step of the first stage of the proof is to prove the linear independence of
the coefficient vectors

{v(k)(λ) : λ ∈ Sp(B), 0 ≤ k ≤ mλ − sλ − 1}.

Denote by [v1, v2, . . . , vn] the determinant of the matrix formed by v1, v2, . . . , vn ∈
Cn. Then we find that

[v(λ1), v(λ2), . . . , v(λn)]

is in fact Vandermonde’s determinant, therefore

[v(λ1), v(λ2), . . . , v(λn)] = ±
∏
i<j

(λj − λi).
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So v(λ1), v(λ2), . . . , v(λn) are linearly independent if λ1, λ2, . . . , λn are distinct.
To deal with derivatives v(k))(λ), we make use of divided differences and follow the
notations in [7], precisely,

v[λ1, λ2] =
v(λ2)− v(λ1)

λ2 − λ1

.

We make first observations as follows:

[v(λ1), v(λ2), . . . , v(λn)] =[v(λ1), v(λ2)− v(λ1, v(λ3), . . . , vλn)]

= (λ2 − λ1)[v(λ1), v[λ1, λ2], v(λ3), . . . , v(λn)].

Recall that v′(λ1) = limλ2→λ1 v[λ1, λ2]. Therefore we get

[v(λ1), v
′(λ1), v(λ3), . . . , v(λn)] = ±

∏
i<j
i,j ̸=3

(λj − λi).

By induction and combining with Genocchi-Hermite formula [7] where

v(k)(λ1) = k! lim
λj→λ1

j ̸=1

v[λ1, λ2, . . . , λk+1],

we deduce a formula of type

[v(λ1), v
′(λ1), . . . , v

(k)(λ1), v(λ2), . . . , v(λn−k)] = ±1!2! . . . k!
∏
i<j

(λj − λi).

Therefore, we deduce that the coefficient vectors

{v(k)(λ) : λ ∈ Sp(B), 0 ≤ k ≤ mλ − sλ − 1}

are linearly independent, and we have such n − m vectors. So the solution space is of
dimension ≤ m, it means

rank(π′(B)) ≤ m.

2.4.2. The rank is bigger than or equal to the degree

To realize this part of the proof, we construct m linearly independent vectors in the
image space of π′(B) in the echelon form as follows. The first ideas of the proof come
from the last part of [8].

We suppose B is in the canonical form (or rational form), i.e.,

B =


C1

C2

. . .
Cl
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where C ′
is are all companion matrices of the invariant factors of the characteristic

polynomial of B and we arrange C ′
is in increasing order of size, and note that the largest

size is of Cl and equal to m the degree of the minimal polynomial. On the other hand, Cl

is the companion matrix of the minimal polynomial of B, i.e., Cl is of the form

Cl =


0 1

0 1
. . . . . .

0 1

−a1 a2 · · · −am−1 −am

 .

Next put H =


H1

H2

. . .
Hl

 to be a diagonal block matrix of the same

form as B where H1, H2, . . . , Hl−1 are zero matrices and Hl is of the form

Hl =


0 0 0

· · ·
· · ·

−h1 −h2 · · · −hm−1 −hm

 ,

i.e., only the last row of Hl has nonzero entries and h1, . . . , hm are complex variables.
Then σk(B + ζH) is a linear polynomial of hm, hm−1, . . . , hm−k+1 (with nonzero

coefficients on these variables) for 1 ≤ k ≤ m.

Therefore if we let hi = 1 and hj = 0 for j ̸= i and 1 ≤ j ≤ m, these vectors

π′(B)H =
d

dζ

∣∣∣∣∣
ζ=0

π(B + ζH)

form m vectors in the echelon form, and thus, are linearly independent. It means

rank(π′(B)) ≥ m.

3. Conclusions
We proved in this note that rank of π′(B) is equal to the degree of the minimal

polynomial of B. This result explains in part why we often have nice results if B is a
non-derogatory matrix (or cyclic matrix according to the terminology of the authors in [2]
or [4]) or in other words, cyclic matrices are regular points of π in the differential sense.
This result partially explains why we can always lift the mapping φ : D → Gn locally
in [3] (although these authors prove a stronger result: they prove the global lifting).
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