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Abstract. We propose a new method for finding a zero point of a sum
involving a Lipschitzian monotone operator and a maximally monotone operator,
both acting on a real Hilbert space. The proposed method aims to extend
forward-reflected-backward method by using inertial effect and variable metric.
The weak convergence of the proposed method is proved under standard
conditions.
Keywords: monotone inclusion, forward-reflected-backward method, variable
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1. Introduction
Many important issues in operator theory, fixed point theorems, equilibrium

problems, variational inequalities, convex optimization, image processing, or machine
learning, reduce to the problem of solving monotone inclusions involving Lipschitzian
operators (see [1-6] and the references therein). In this work, we consider the monotone
inclusions of finding a zero point of sum of a maximal monotone operator A and a
monotone, L-Lipschitzian operator B, acting on a real Hilbert space H, i.e.,

Find x ∈ H such that 0 ∈ (A+B)x. (1.1)

Throughout this paper, we assume that a solution x exists. For solving problem (1.1),
several methods have been proposed. The first one is the forward-backward-forward
method proposed by Tseng [7]:

γ ∈ ]0,+∞[ ,

{
yk = JγA(xk − γBxk)

xk+1 = yk − γByk + γBxk.
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A limitation of this method is that at each iteration step, one has to compute twice the
values of operator B. This issue was recently resolved in [6], the forward reflected
backward splitting method was proposed, namely,

γ ∈ ]0,+∞[ , xk+1 = JγA(xk − 2γBxk + γBxk−1). (1.2)

The convergence of (1.2) is derived under condition that γ < 1
2L

. In [5],
for solving problem (1.1), an alternative method was proposed, namely the
reflected-forward-backward method. We notice here that the methods in [5-7] are limited
to the fixed metric. While the variable metric methods have obtained a lot of attention
in the literature (see [8-12] and the references therein). Variable metric methods improve
the convergence profiles.

In this paper, we consider a new splitting method for solving problem (1.1). The
proposed method extends the forward-reflected-backward in [6] by using variable metric
and inertial effect. In [13], Polyak introduced the so-called heavy ball method in order
to speed up the classical gradient method. This idea was employed and refined by some
authors. In [14], Alvarez and Attouch employed the heavy ball method and proposed the
inertial proximal point algorithm. We emphasize that use of inertial effects helps increase
the convergence rate of the algorithm [15, 16].

2. Preliminaries
2.1. Notations

We recall some notation and background from convex analysis and monotone
operator theory (see [1] for detail).

The scalar products and the associated norms of a Hilbert space H are denoted
respectively by ⟨· | ·⟩ and ∥ · ∥. The symbols ⇀ and → denote respectively weak and
strong convergence. We denote by B(H) the space of bounded linear operators from H
in to itself and S(H) = {K ∈ B(H)|K = K⋆}, where K⋆ denotes the adjoint of K. The
Loewner partial ordering on S(H) is defined as:

(∀U ∈ S(H))(∀V ∈ S(H)) U ≽ V ⇐⇒ (∀x ∈ H) ⟨Ux | x⟩ ≥ ⟨V x | x⟩ .

Let θ ≥ 0, we set

Pθ(H) = {U ∈ S(H)| U ≽ θ Id},

for U ∈ Pθ(H), we define a semi-scalar product and a semi-norm (a scalar product and a
norm if θ > 0) by:

(∀(x, y) ∈ H2) ⟨x | y⟩U = ⟨Ux | y⟩ and ∥x∥U =
√

⟨Ux | x⟩.

Let A : H → 2H be a set-valued operator. The domain of A is denoted by dom(A)
which is a set of all x ∈ H such that Ax ̸= ∅. The range of A is ran(A) =
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{
u ∈ H | (∃x ∈ H)u ∈ Ax

}
. The graph of A is gra(A) =

{
(x, u) ∈ H ×H | u ∈ Ax

}
.

The inverse of A is A−1 : u 7→
{
x | u ∈ Ax

}
. The zero set of A is zer(A) = A−10.

We denote as ℓ1(N) the space of absolute summable sequences.

Definition 2.1. We say that an operator A : H → 2H is

(i) monotone if(
∀(x, u) ∈ gra(A)

)(
∀(y, v) ∈ gra(A)

)
⟨x− y | u− v⟩ ≥ 0.

(ii) maximally monotone if it is monotone and there exists no monotone operator
B : H → 2H such that gra(B) properly contains gra(A), i.e., there is no monotone
operator that properly contains it.

Definition 2.2. A mapping T : H → H is said to be

(i) L-Lipschitz continuous (L ∈ [0,+∞[) if

∥Tx− Ty∥ ≤ L∥x− y∥ ∀x, y ∈ H.

(ii) c-cocoercive (c ∈ [0,+∞[) if

⟨x− y | Tx− Ty⟩ ≥ c∥Tx− Ty∥2 ∀x, y ∈ H.

Definition 2.3. For A : H → 2H, the resolvent of operator A is

JA = (Id+A)−1,

where Id denotes the identity operator on H.

Note that, when A is maximally monotone, JA is an everywhere single-valued
operator [1].

2.2. Technical results

The following properties can be found in [8, 9]:

Lemma 2.1. [8, Lemma 2.1] Let θ ∈]0,+∞[, µ ∈]0,+∞[, and let A,B ∈ S(H) such
that µ Id ≽ A ≽ B ≽ θ Id, then

(i) θ−1 Id ≽ B−1 ≽ A−1 ≽ µ−1 Id.

(ii) (∀x ∈ H) ⟨A−1x | x⟩ ≥ ∥A∥−1∥x∥2.

(iii) ∥A−1∥ ≤ θ−1.
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Lemma 2.2. [8, Lemma 2.3] Let θ ∈]0,+∞[, let (ηk)k∈N ∈ ℓ1(N) and let (Wk)k∈N
be a sequence in Pθ(H) such that µ = supk∈N ∥Wk∥ < +∞. Assume that one of the
following holds:

(i) (∀k ∈ N) (1 + ηk)Wk ≽ Wk+1.

(ii) (∀k ∈ N) (1 + ηk)Wk+1 ≽ Wk.

Then there exists W ∈ Pθ(H) such that Wk → W pointwise.

Lemma 2.3. [9, Lemma 3.7] Let A : H → 2H be a maximally monotone, θ ∈]0,+∞[,
U ∈ Pθ(H) and G be the real Hilbert space obtained by endowing H with the scalar
product (x, y) 7→ ⟨x | y⟩U−1 = ⟨x | U−1y⟩. The following properties hold:

(i) UA : G → 2G is maximally monotone.

(ii) JUA : G → 2G is 1−cocoercive.

We also have the following results which are necessary to prove the convergence of
the algorithm:

Lemma 2.4. Assume (zk)k∈N, (αk)k∈N, (tk)k∈N are nonnegative sequences such that
(αk)k∈N is summable and

(∀k ∈ N) zk+1 ≤ (1 + αk)zk − tk.

then (zk)k∈N converges and (tk)k∈N is summable.

Lemma 2.5. Let (αk)k∈N, (θk)k∈N, (λk)k∈N be sequences in R. Assume that (λk)k∈N is
absolutely summable sequence and there exists t > 0 such that αk ≥ (1 + t)|θk|, ∀k ∈ N.
Then, there exist a t0 > 0 and k0 ∈ N such that ∀k ≥ k0, we have

αk

1 + λk

+ θk ≥
αk + θk

1 + λk(1 +
1
t0
)
. (2.1)

Proof. (2.1) is equivalent to(
1 + λk(1 +

1

t0
)
)
(αk + (1 + λk)θk) ≥ (1 + λk)(αk + θk)

⇔ λk

t0
αk + λk(1 + λk)(1 +

1

t0
)θk ≥ 0

⇔ αk + (1 + λk)(1 + t0)θk ≥ 0.

There exists a k0 ∈ N such that ∀k ≥ k0: |λk| ≤ t
2
, then for t0 ≤ t

t+2
, we have

|(1 + λk)(1 + t0)| ≤ (1 +
t

2
)(1 +

t

t+ 2
) = t+ 1.

Hence, we obtain the desired result from the condition that αk ≥ (1 + t)|θk|.
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3. Proposed method and convergences
3.1. Proposed method and related works

We develop the following variable metric framework for solving problem (1.1). Let
γ > 0, α ≥ 0, (ηk)k∈N be a non-negative sequence in ℓ1(N) and (Uk)k∈N be a sequence in
Pθ(H) (θ > 0). Assume that

µ = sup
k∈N

∥Uk∥ < +∞ and (∀k ∈ N) (1 + ηk)Uk+1 ≽ Uk ≽ Uk+1. (3.1)

Let x−1, x0 ∈ H, we set (∀k ∈ N)

xk+1 = JγUkA

[
(1 + α)xk − αxk−1 − γ(2UkBxk − UkBxk−1)

]
. (3.2)

Remark 3.1. (i) The condition (3.1) was introduced in [8] and utilized in [9, 11, 12].
We also note that condition is satisfied in particular when Uk ≡ U ∈ Pθ(H) and
ηk = 0 (∀k ∈ N). In case variable metric is not constant, we can choose Uk+1 =
Uk

1+ηk
.

(ii) In the case when (∀k ∈ N) Uk = Id, α = 0, then (3.2) becomes the
forward-reflected-backward method proposed in [6].

Remark 3.2. Variable metric algorithms have a long history. Variable metric methods in
optimization were introduced in [10, 17] to improve the convergence profiles. The idea
was then extended to the variable metric proximal point algorithm to find a zero point of
a maximal monotone operator; see [8, 18, 19] for instances. For the problem of finding
a zero point of the sum of a maximally monotone operator and a Lipschitzian monotone
operator, the variable metric methods were developed in [11, 12].

3.2. Weak convergence

To prove the convergence of Algorithm 3.1., we need the following lemma.

Lemma 3.1. Let (xk)k∈N be a sequence generated from Algorithm 3.1., and x ∈
zer(A+ B), then we have

∥xk − x∥2
U−1
k

+ (γµL+ 2α)∥xk − xk−1∥2U−1
k

− α∥xk−1 − x∥2
U−1
k

+ 2γ ⟨Bxk−1 −Bxk | xk − x⟩

≥ 1

1 + ηk

(
∥xk+1 − x∥2

U−1
k+1

+ (γµL+ 2α)∥xk+1 − xk∥2U−1
k+1

)
− α∥xk − x∥2

U−1
k+1

+ 2γ ⟨Bxk −Bxk+1 | xk+1 − x⟩+ (1− 3α− 2γµL)∥xk+1 − xk∥2U−1
k
. (3.3)

Proof. From (3.2), we get

(1 + α)xk − αxk−1 − γ(2UkBxk − UkBxk−1)− xk+1 ∈ γUkAxk+1,
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then we have

U−1
k

(
(1 + α)xk − αxk−1 − xk+1

)
γ

− 2Bxk +Bxk−1 ∈ Axk+1,

−Bx ∈ Ax,

hence〈
U−1
k

(
(1 + α)xk − αxk−1 − xk+1

)
γ

− 2Bxk +Bxk−1 +Bx | xk+1 − x

〉
≥ 0,

which implies〈
U−1
k (xk − xk+1)

γ
| xk+1 − x

〉
+ α

〈
U−1
k (xk − xk−1)

γ
| xk+1 − xk + xk − x

〉
≥ ⟨2Bxk −Bxk−1 | xk+1 − x⟩ ,

which is equivalent to

1

2γ

(
∥xk − x∥2

U−1
k

− ∥xk+1 − x∥2
U−1
k

− ∥xk+1 − xk∥2U−1
k

)
− α

2γ

(
∥xk−1 − x∥2

U−1
k

− ∥xk − x∥2
U−1
k

− ∥xk−1 − xk∥2U−1
k

)
+

α

γ

〈
U−1
k (xk − xk−1) | xk+1 − xk

〉
≥ ⟨Bxk −Bxk+1 | xk+1 − x⟩ − ⟨Bxk−1 −Bxk | xk+1 − xk⟩
− ⟨Bxk−1 −Bxk | xk − x⟩ . (3.4)

By utilizing the Cauchy-Schwarz inequality and Lemma 2.1 (i), we have

|2
〈
U−1
k (xk − xk−1) | xk+1 − xk

〉
| ≤ ∥xk − xk−1∥2U−1

k
+ ∥xk+1 − xk∥2U−1

k
,

and

|2 ⟨Bxk−1 −Bxk | xk+1 − xk⟩ | ≤ L
(
∥xk−1 − xk∥2 + ∥xk+1 − xk∥2

)
≤ µL(∥xk − xk−1∥2U−1

k
+ ∥xk+1 − xk∥2U−1

k
).

Inequality (3.4) implies that(
∥xk − x∥2

U−1
k

− ∥xk+1 − x∥2
U−1
k

− ∥xk+1 − xk∥2U−1
k

)
− α

(
∥xk−1 − x∥2

U−1
k

− ∥xk − x∥2
U−1
k

− ∥xk−1 − xk∥2U−1
k

)
+ α(∥xk − xk−1∥2U−1

k
+ ∥xk+1 − xk∥2U−1

k
)

≥ 2γ ⟨Bxk −Bxk+1 | xk+1 − x⟩ − 2γ ⟨Bxk−1 −Bxk | xk − x⟩
− γµL(∥xk − xk−1∥2U−1

k
+ ∥xk+1 − xk∥2U−1

k
).
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We obtain

∥xk − x∥2
U−1
k

− α∥xk−1 − x∥2
U−1
k

+ (γµL+ 2α)∥xk − xk−1∥2U−1
k

+ 2γ ⟨Bxk−1 −Bxk | xk − x⟩
≥ ∥xk+1 − x∥2

U−1
k

− α∥xk − x∥2
U−1
k

+ (γµL+ 2α)∥xk+1 − xk∥2U−1
k

+ 2γ ⟨Bxk −Bxk+1 | xk+1 − x⟩+ (1− 3α− 2γµL)∥xk+1 − xk∥2U−1
k
.

From (3.1) and Lemma 2.1 (i), we have (1 + ηk)U
−1
k ≽ U−1

k+1 ≽ U−1
k , we obtain (3.3).

The proof is completed.

We have the following theorem.

Theorem 3.1. Let (xk)k∈N be a sequence generated from Algorithm 3.1. with α ∈ [0, 1
3
[.

Suppose that

γ <
1− 3α

2µL
. (3.5)

Then (xk)k∈N converges weakly to a point in zer(A+B).

Proof. We rewrite (3.3) as

∥xk − x∥2
U−1
k

+ (γµL+ 2α)∥xk − xk−1∥2U−1
k

− α∥xk−1 − x∥2
U−1
k

+ 2γ ⟨Bxk−1 −Bxk | xk − x⟩

≥ 1

1 + ηk

(
∥xk+1 − x∥2

U−1
k+1

+ (γµL+ 2α)∥xk+1 − xk∥2U−1
k+1

)
− α∥xk − x∥2

U−1
k+1

+ 2γ ⟨Bxk −Bxk+1 | xk+1 − x⟩+ (1− 3α− 2γµL)∥xk+1 − xk∥2U−1
k
.

We set

Tk = ∥xk − x∥2
U−1
k

+ (γµL+ 2α)∥xk − xk−1∥2U−1
k
. (3.6)

Then we have

Tk − α∥xk−1 − x∥2
U−1
k

+ 2γ ⟨Bxk−1 −Bxk | xk − x⟩

≥ 1

1 + ηk
Tk+1 − α∥xk − x∥2

U−1
k+1

+ 2γ ⟨Bxk −Bxk+1 | xk+1 − x⟩

+ (1− 3α− 2γµL)∥xk+1 − xk∥2U−1
k
. (3.7)

We will show that there exists a t > 0 such that

Tk ≥ (1 + t)| − α∥xk−1 − x∥2
U−1
k

+ 2γ ⟨Bxk−1 −Bxk | xk − x⟩ |.
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Indeed, from the definition of Tk (3.6), we have

Tk = (1− 3α− 2γµL)∥xk − x∥2
U−1
k

+ (3α + 2γµL)∥xk − x∥2
U−1
k

+ (γµL+ 2α)∥xk − xk−1∥2U−1
k

= (1− 3α− 2γµL)∥xk − x∥2
U−1
k

+ α(3∥xk − x∥2
U−1
k

+ 2∥xk − xk−1∥2U−1
k
)

+ γµL(2∥xk − x∥2
U−1
k

+ ∥xk − xk−1∥2U−1
k
)

Using U−1
k ≽ 1

µ
Id, the inequality 3x2+ y2 ≥ 6

5
(x+ y)2, the Lipschitz condition of B and

the Cauchy-Schwarz inequality, we get

Tk ≥ (1− 3α− 2γµL)∥xk − x∥2
U−1
k

+
6α

5
∥xk−1 − x∥2

U−1
k

+ γL(2∥xk − x∥2 + ∥xk − xk−1∥2)

≥ (1− 3α− 2γµL)∥xk − x∥2
U−1
k

+
6α

5
∥xk−1 − x∥2

U−1
k

+ 2γL
√
2| ⟨xk − x | xk − xk−1⟩ |

≥ (1− 3α− 2γµL)∥xk − x∥2
U−1
k

+
6

5
| − α∥xk−1 − x∥2

U−1
k

+ 2γ ⟨Bxk−1 −Bxk | xk − x⟩ |. (3.8)

Hence, Lemma 2.5 and (3.7) imply that there exist t0 > 0 and k0 ∈ N such that ∀k ≥ k0.
By this, we obtain

Sk ≥
1

1 + (1 + 1
t0
)ηk

Sk+1 + (1− 3α− 2γµL)∥xk+1 − xk∥2U−1
k
, (3.9)

where Sk = Tk − α∥xk−1 − x∥2
U−1
k

+ 2γ ⟨Bxk−1 −Bxk | xk − x⟩.
From condition (3.5) and (3.8), we deduce

Sk ≥ (1− 3α− 2γµL)∥xk − x∥2
U−1
k

≥ 0. (3.10)

It follows from (3.9) that

Sk+1 ≤ (1 + (1 +
1

t0
)ηk)Sk − (1− 3α− 2γµL)∥xk+1 − xk∥2U−1

k
.

Note that (ηk)k∈N ∈ ℓ1(N), then using Lemma 2.4, we obtain{
∥xk+1 − xk∥ → 0,

there exists ξ ∈ R such that Sk → ξ.
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From Sk → ξ and (3.10) it can be deduced that the sequence (xk)k∈N is bounded.
Therefore

lim
k→∞

Sk

= lim
k→∞

(
∥xk − x∥2

U−1
k

+ (γµL+ 2α)∥xk − xk−1∥2U−1
k

− α∥xk−1 − x∥2
U−1
k

+ 2γ ⟨Bxk−1 −Bxk | xk − x⟩
)

= lim
k→∞

(
∥xk − x∥2

U−1
k

+−α∥xk−1 − x∥2
U−1
k

)
= ξ.

Let (x⋆, u⋆) be a weak sequential cluster point of (xk, uk)k∈N. Then there exists a
subsequence (xkn , ukn)n∈N that converges weakly to (x⋆, u⋆).
We have

U−1
k

(
(1 + α)xk − αxk−1 − xk+1

)
γ

− 2Bxk +Bxk−1 ∈ Axk+1,

which implies

U−1
k

(
(1 + α)xk − αxk−1 − xk+1

)
γ

− 2Bxk +Bxk−1 +Bxk+1 ∈ (A+B)xk+1. (3.11)

We have

∥(1 + α)xk − αxk−1 − xk+1∥ = ∥(xk − xk+1) + α(xk − xk−1)∥
≤ ∥xk+1 − xk∥+ α∥xk − xk−1∥,

and

∥ − 2Bxk +Bxk−1 +Bxk+1∥ ≤ ∥Bxk+1 −Bxk∥+ ∥Bxk −Bxk−1∥
≤ L(∥xk+1 − xk∥+ ∥xk − xk−1∥).

We deduce that the left-hand side of (3.11) converges strongly to 0. Thus, the right-hand
side of (3.11) is a maximal monotone operator on H and gra(A + B) is closed under
Hweak ×Hstrong [1]. Therefore, 0 ∈ (A+B)x⋆ which implies x⋆ ∈ zer(A+B).

Assume that (xkn)n∈N ⇀ x, (xln)n∈N ⇀ y. We have that

−
(
∥xk − x∥2

U−1
k

− α∥xk−1 − x∥2
U−1
k

)
+
(
∥xk − y∥2

U−1
k

− α∥xk−1 − y∥2
U−1
k

)
+ (∥x∥2

U−1
k

− α∥x∥2
U−1
k
)− (∥y∥2

U−1
k

− α∥y∥2
U−1
k
)

= 2
(
⟨xk | x− y⟩U−1

k
− α ⟨xk−1 | x− y⟩U−1

k

)
. (3.12)
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Choose k = kn and k = ln then take limit both sides of (3.12) when n → ∞, note that,
by using Lemma 2.2, we have

Uk → U ∈ Pθ.

We obtain

∥x− y∥2U−1 − α∥x− y∥2U−1 = 0,

which implies that x = y. Hence (xk)k∈N converges weakly to x. The proof is completed.

Remark 3.3. When α = 0, Uk = Id (∀k ∈ N), the condition (3.5) of stepsize becomes
γ < 1

2L
. This result recovers the result in [6].

4. Conclusions
The paper proposed a novel variable metric inertial method for locating the zero

point of a sum involving two operators. Specifically, one operator is maximally monotone,
while the other is monotone-Lipschitz. By satisfying certain conditions on the parameters
and metrics, we rigorously established the weak convergence of the proposed algorithm.
Acknowledgements. This research is funded by University of Transport and
Communications (UTC) under grant number T2024-CB-005.
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