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Abstract. This paper investigates a class of explicit pseudo three-step Runge-Kutta
methods for arbitrarily high order nonstiff initial value problems for systems
of first-order differential equations. By using collocation techniques and by
suitably choosing collocation points we can obtain a stable s-stage explicit pseudo
three-step Runge-Kutta method (EPThRK method) of order p = 2s requiring only
one effective sequential f - evaluation per step on s-processor parallel computers.
By a few widely-used test problems, we show the superiority of the new EPThRK
methods proposed in this paper over red well-known parallel PIRK codes and
efficient sequential ODEX, DOPRI5 and DOP853 codes available in the literature.
Keywords: Runge-Kutta methods, three-step methods, stability, parallelism.

1. Introduction
We consider numerical solutions of following nonstiff initial value problem (IVP)

of first-order ordinary differential equations (ODEs)

y′(t) = f(t,y(t)), y(t0) = y0, t0 ⩽ t ⩽ T, (1.1)

where y, f ∈ Rd. The most efficient numerical methods for solving this problem are the
explicit Runge-Kutta methods (RK methods). In the literature, the sequential explicit RK
methods up to order 10 can be found in e.g., [1]-[4]. In order to exploit the facility
of parallel computers, a number of parallel RK-type methods have been investigated
in e.g., [5]-[27]. A common challenge in these mentioned papers is how to reduce,
for a given order of accuracy, the required number of sequential f -evaluations per step
by using parallel processors. In the present paper, we investigate a particular class of
numerical methods called explicit pseudo three-step RK methods (EPThRK methods)
for the numerical solution of the problem (1.1). The three-step nature of the methods
considered in this paper is similar to the two-step nature of the methods investigated
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in [10]. The approach that we apply here is to approximate the stage values at the present
step by using the stage values from the preceding steps. By using collocation techniques,
we can obtain an s-stage EPThRK method possessing step point order p∗ and stage order
q∗ with s ⩽ p∗, q∗ ⩽ 2s, requiring s f -evaluations per step. However, each of these
s f -evaluations can be computed in parallel. Consequently, when an s-stage EPThRK
method is implemented on an s-processor computer, only one sequential f -evaluation per
step is required. The approach used in this paper can be extended to the case of special
second-order ODEs (cf. [28] ).

In Section 2, we introduce the proposed EPThRK methods. We also study their
order conditions and stability properties. In Section 3, we present numerical comparisons
of EPThRK methods with the most efficient parallel and sequential numerical codes
available in up-to-date literarture.

2. Explicit pseudo three-step Runge-Kutta methods
We suppose that an s-dimensional collocation vector c =(c1, . . . , cs)T with distinct

abscissas ci is given. An s-stage EPThRK method for solving the problem (1.1) is
defined by

Yn,i = yn + h
s∑

j=1

bijf(tn−2 + hcj,Yn−2,j)

+ h
s∑

j=1

aijf(tn−1 + hcj,Yn−1,j), i = 1, . . . , s, (2.1a)

yn+1 = yn + h
s∑

j=1

bjf(tn + hcj,Yn,j). (2.1b)

In Eq. (2.1), yn+1 ≈ y(tn+1), yn ≈ y(tn), h is the stepsize, the s × s matrices
A = (aij), B = (bij), and the s-dimensional vector b = (bj) are the method parameters
matrices and vectors. The vector components Yn,j , Yn−1,j and Yn−2,j denote the jth
vector components of the stage vectors representing numerical approximations to the
exact solutions y(tn + hcj), y(tn−1 + hcj) and y(tn−2 + hcj), respectively. The method
parameters matrices A,B and vector b will be determined by order conditions (see
Section 2.1). This method is similar to a RK method but it is not a RK method. It has no
implicit relation and carries information from preceding nth, (n−1)th and (n−2)th steps,
and we, therefore, call method (2.1) the s-stage explicit pseudo three-step Runge-Kutta
method (EPThRK method) based on the collocation vector c. For convenience, we specify
this EPThRK method by the following tableau

B A c O
yn+1 bT
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In order to start the method (2.1), an appropriate starting procedure is needed to generate
a sufficiently accurate starting vector components Y0,j,Y1,j, j = 1, . . . , s and value y2

from y0. This can be done, for example, by using an appropriate BPIRK-type method
(cf. e.g., [19]). For the EPThRK method (2.1), at each step, we need to compute 3s
f -evaluations of f(tn−2 + hcj,Yn−2,j), f(tn−1 + hcj,Yn−1,j), f(tn + hcj,Yn,j), j =
1, . . . , s. However, 2s f -evaluations of f(tn−2 + hcj,Yn−2,j), f(tn−1 + hcj,Yn−1,j), j =
1, . . . , s are already available from the two preceding steps so that only s f -evaluations of
f(tn + hcj,Yn,j), j = 1, . . . , s are required. These s f -evaluations can be evaluated in
parallel on s processors. Consequently, the s-stage EPThRK method (2.1) implemented
on an s-processor computer, requires just one effective sequential f -evaluation per step.

The order and stage order of EPThRK method (2.1) can be studied in the same
way as the order and stage order of RK methods. Thus suppose that yn = y(tn) and
Yn−2,j = y(tn−2 + hcj), Yn−1,j = y(tn−1 + hcj), j = 1, . . . , s. Then we have the
following orders definition

Definition 2.1. The EPThRK method (2.1) is said to be of order p∗ if

y(tn+1)− yn+1 = O(hp∗+1)

and stage order q∗ = min{p∗, q} if in addition,

y(tn + hci)−Yn,i = O(hq+1), i = 1, . . . , s.

Notice that the local stage order of the method (2.1) equals q + 1. Now in the next
section, we shall consider the order conditions for EPThRK methods.

2.1. Order conditions

In this section we consider order conditions for the EPTRK methods. For the (fixed)
stepsize h, the qth-order conditions for (2.1a) and the pth-order conditions for (2.1b) are
derived by replacing Yn−2,j , Yn−1,j , yn, Yn,j and yn+1 by the exact solution values
y(tn−2+hcj) = y(tn+h(cj −2)), y(tn−1+hcj) = y(tn+h(cj −1)), y(tn), y(tn+hcj)
and y(tn+1) = y(tn + h), respectively. On substitution of these exact solution values into
(2.1), we are led to the relations

y(tn + hci)− y(tn)− h

s∑
j=1

bijy
′(tn + h(cj − 2)) (2.2a)

− h
s∑

j=1

aijy
′(tn + h(cj − 1)) = O(hq+1), i = 1, . . . , s

y(tn + h)− y(tn)− h

s∑
j=1

bjy
′(tn + hcj) = O(hp+1). (2.2b)
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By using the Taylor expansions in the neighbourhood of tn, we can expand the left-hand
sides of (2.1) in powers of h and obtain

q∑
l=1

C
(l)
i

(
h
d

dt

)l

y(tn) + C
(q+1)
i

(
h
d

dt

)q+1

y(t∗i ) = O(hq+1), (2.3a)

p∑
l=1

D(l)
(
h
d

dt

)l

y(tn) +D(p+1)
(
h
d

dt

)p+1

y(t∗) = O(hp+1), (2.3b)

where, t∗i and t∗ are suitably chosen points in the interval [tn−1, tn+1] and

C
(l)
i =

(ci)
l

l
−

s∑
j=1

bij(cj − 2)l−1 −
s∑

j=1

aij(cj − 1)l−1, i = 1, . . . , s, (2.3c)

D(l) =
1

l
−

s∑
j=1

bj(cj)
l−1, (2.3d)

For the order and stage order of EPThRK methods, we have the following theorem:

Theorem 2.1. If the function f is Lipschitz continuous, and if

(ci)
l

l
=

s∑
j=1

bij(cj − 2)l−1 +
s∑

j=1

aij(cj − 1)l−1, i = 1, . . . , s, l = 1, . . . , q, (2.4a)

1

l
=

s∑
j=1

bj(cj)
l−1, l = 1, . . . , p, (2.4b)

then the EPThRK method (2.1) has order p∗ = min{p, q + 1} and stage order q∗ =
min{p, q} for any collocation vector c = (c1, . . . , cs)

T with distinct abscissas ci.

Proof. Suppose that yn = y(tn) and Yn−2,i = y(tn−2 + hci), Yn−1,i = y(tn−1 + hci),
i = 1, . . . , s. The Eq. (2.3) and (2.4) ensure that the Eq. (2.2) are satisfied, then we have
the following local order relations

y(tn + hci)−Yn,i = O(hq+1), i = 1, . . . , s. (2.5)

Furthermore

y(tn+1)− yn+1 = y(tn+1)− y(tn)− h
s∑

j=1

bjy
′(tn + hcj)

+ h

s∑
j=1

bj[f(tn + hcj,y(tn + hcj))− f(tn + hcj,Yn,j)] = O(hp+1) +O(hq+2)

(2.6)

Definition (2.1) and Eq. (2.5), (2.6) give us p∗ = min{p, q + 1}, q∗ = min{p, q} and
Theorem (2.1) is proved.
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In order to express the parameter vector and matrices b = (bi), B = (bij), A =
(aij) explicitly in terms of the collocation vector c, we define the following matrices and
vector

P :=
(
c,

c2

2
,
c3

3
, . . . ,

cs

s

)
, P ∗ :=

( cs+1

s+ 1
,
cs+2

s+ 2
, . . . ,

c2s

2s

)
,

Q :=
(
e, (c− e), . . . , (c− e)s−1

)
, Q∗ :=

(
(c− e)s, . . . , (c− e)2s−1

)
,

V :=
(
e, (c− 2e), . . . , (c− 2e)s−1

)
, V ∗ :=

(
(c− 2e)s, . . . , (c− 2e)2s−1

)
,

R :=
(
e, c, c2, c3, . . . , cs−1

)
, g :=

(
1,

1

2
,
1

3
,
1

4
, . . . ,

1

s

)T

.

Then the order conditions (2.4) in Theorem (2.1) for q = 2s, p = s can be presented in
the form

AQ+BV = P, (2.7a)
AQ∗ +BV ∗ = P ∗, (2.7b)

bTR− gT = 0. (2.7c)

Since the abscissas ci of the vector c are assumed to be distinct, the matrices V and R are
nonsingular, assuming that the matrix QV −1V ∗ −Q∗ is also nonsingular, from (2.7), we
can write

A = (PV −1V ∗−P ∗)(QV −1V ∗−Q∗)−1, B = (P −AQ)V −1, bT = gTR−1. (2.8)

In view of Theorem 2.1, it follows from (2.8) that

y(tn+1)− yn+1 = O(hmin{p,2s+1})

y(tn + hci)−Yn,i = O(hmin{p,2s}), i = 1, . . . , s.

Notice that the vector b defined in (2.8) by the condition (2.7c) is the vector of weights
of the collocation implicit RK method based on collocation vector c so that p at least
equals s. With a special choice of the vector c, it is possible to increase the order p
beyond s (superconvergence) by satisfying the orthogonality relation (see [3, p. 207].
The following theorem is a direct consequence of Theorem (2.1), the explicit expressions
of the parameters of EPThRK methods and the application of the orthogonality relation.

Theorem 2.2. Suppose that c = (c1, . . . , cs)
T is a collocation vector with distinct

abscissas ci and the matrix QV −1V ∗−Q∗ is nonsingular, then an s-stage EPThRK method
defined by (2.1) is of order p∗ ⩾ s and of stage order q∗ ⩾ s if the method parameter
matrices A,B and vector b satisfy the relations in (2.8). It has order p∗ = s + r and
stage order q∗ = s+ r if, in addition, the following orthogonality relation is satisfied

Pj(1) = 0, Pj(x) :=

∫ x

0

ξj−1

s∏
i=1

(ξ − ci)dξ, j = 1, . . . , r. (2.9)
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We know that if c is a Gauss-Legendre collocation vector (the vector abscissas are
the Gauss-Legendre collocation points), the orthogonality relation (2.9) is verified for
j = 1, . . . , s. Thus, we have the following corollary.

Corollary 2.1. If c is Gauss-Legendre collocation vector, then the s-stage EPThRK
method defined by (2.1) with parameter matrices and vector satisfying relations in (2.8)
has the order p∗ = 2s and stage order q∗ = 2s.

Thus, the attainable order and stage order for an s-stage EPThRK method is 2s.
According to the analysis of the local errors in this section, the starting vectors

Y0,j,Y1,j, j = 1, . . . , s and value y1 should verify the order relations

y(t0 + hcj)−Y0,j = O(hp∗+1), y(t1 + hcj)−Y1,j = O(hp∗+1),

y(t2)− y2 = O(hp∗+1), j = 1, . . . , s,
(2.10)

where p∗ is the order of the underlying EPThRK method.

2.2. Stability properties

To study stability properties, we apply the method (2.1) to the model test equation
y′(t) = λy(t), where λ runs through the eigenvalue set of the Jacobian matrix ∂f/∂y
which are supposed to be confined within in the left complex plane. For the model test
equation, the EPThRK method (2.1) assumes the form

Yn =yne+ zBYn−2 + zAYn−1

=zBYn−2 + zAYn−1 + yne, (2.11a)

yn+1 =yn + zbTYn

=yn + zbT (yne+ zBYn−2 + zAYn−1)

=(1 + zbTe)yn + z2bTBYn−2 + z2bTAYn−1

=z2bTBYn−2 + z2bTAYn−1 + (1 + z)yn. (2.11b)

From (2.11), we are led to the recursion

Yn−1

Yn

yn+1

 = M(z)

Yn−2

Yn−1

yn

 , (2.12a)

where M(z) is the (2s+ 1)× (2s+ 1) matrix defined by

M(z) =

 O I 0
zB zA e

z2bTB z2bTA 1 + z

 . (2.12b)
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Here, I is s× s identity matrix and O is zero s× s matrix. The (2s+1)× (2s+1) matrix
M(z) will be called the amplification matrix, and its spectral radius ρ(M(z)) the stability
function. The stability region denoted by Sstab of EPThRK methods is given by

Sstab := {z : ρ(M(z)) ⩽ 1}.

Since EPThRK methods of the form (2.1) are of three-step nature, we have to confirm
their property of zero-stability by the following evident theorem.

Theorem 2.3. EPThRK methods based on any collocation vector c = (c1, . . . , cs)
T with

distinct abscissas ci are always zero-stable.

The associated real and imaginary stability boundaries denoted by βre and βim,
respectively, can be defined in the usual way. The construction of EPThRK methods
possessing large stability regions and also their stability plots will be considered in the
forthcoming paper. The stability pairs (βre, βim) of some specified EPThRK methods
used in the numerical experiments are reported in Section 3.

3. Numerical comparisons
This section shows the efficiency of the EPThRK methods by numerical

comparisons of these EPThRK methods with the most efficient existing computational
ODE codes. The numerical comparisons can be done by applying various methods and
codes to the numerical solution of widely used test problems taken from the literature.

3.1. Choosing EPThRK methods

As we know from Section 2.1, an s-stage EPThRK method attains the highest
order p∗ = 2s if the method is based on Gauss-Legendre collocation vector c (see
Corollary 2.1). Therefore, we consider EPThRK methods based on Gauss-Legender
collocation vectors. We restrict our consideration to the 2-stage and 3-stage EPThRK
methods, that is the EPThRK methods based on

c =
(3−√

3

6
,
3 +

√
3

6

)T

and c =
(5−√

15

10
,
1

2
,
5 +

√
15

10

)T

, (3.1)

respectively. By the choice of the collocation vector c, the resulting EPThRK methods
denoted by EPThRK4 and EPThRK6, have the order and stage order equal to 4, 6,
respectively (see Corollary 2.1). This choice of methods allows us to compare the existing
numerical codes with the EPThRK methods of comparable orders. The stability pairs
(βre, βim) as defined in Section 2.2 of these chosen EPThRK methods are computed to be
equal to (0.301, 0.297) and (0.257, 0.249), respectively. These stability pairs are not large
but good enough for nonstiff problems.

In the application of the EPThRK methods to the numerical integration, in the first
step, the starting stage vectors Y0,i,Y1,i, i = 1, . . . , s and step value y2 of an EPThRK
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method will be generated from y0 by the associated BPIRK method proposed in [19].
This BPIRK method is based on the same collocation vector c as the underlying EPThRK
method. The numerical approximations at appropriate block points will be used for the
starting vectors Y0,i,Y1,i, i = 1, . . . , s and value y2. The vectors Y0,i,Y1,i, i = 1, . . . , s
and value y2 generated in this way will satisfy the accuracy requirement defined by (2.10)
in previous section.

The absolute error obtained at the end point of the integration interval is presented
in the form 10−NCD (NCD indicates the accuracy and may be interpreted as the average
number of correct decimal digits). The computational costs are measured by the values
of NFUN denoting the total number of sequential f -evaluations required over the total
number of integration steps. Notice that NFUN of EPThRK4 and EPThRK6 methods
include the number of f -evaluations in the two first steps with the use of BPIRK methods.

In the numerical comparisons, a method is considered more efficient if for a given
NFUN , it can give higher NCD or equivalently, for a given NCD, it requires fewer
NFUN .

The numerical comparisons of various methods in this section are based on the
numerical solution of small widely used test problems taken from the literature show
a potential superiority of the EPThRK methods over existing codes. This superiority is
significant improvement in a parallel machine if the test problems are large enough and/or
the f -evaluations are expensive (cf., e.g., [7]).

All the computations were carried out on a 14-digit precision computer.

3.2. Test problems

For the numerical comparisons, we apply various methods and codes to the
numerical integration of the three well-known test problems are taken from the ODE
literature:

JACB - The Jacobi elliptic functions sn, cn, dn problem for the equation of motion
of a rigid body without external forces on the integration interval [0, 20] (cf., e.g., [4, p.
240], also [29])

y′1(t) = y2(t)y3(t), y1(0) = 0,

y′2(t) = −y1(t)y3(t), y2(0) = 1,

y′3(t) = −0.51y1(t)y2(t), y3(0) = 1.

The exact solution is given by the Jacobi elliptic functions y1(t) = sn(t; k),
y2(t) = cn(t; k), y3(t) = dn(t; k) (see [30]).

FEHL - The often-used Fehlberg problem on the integration interval [0, 5](cf., e.g., [3,
20])

y′1(t) = 2ty1(t)log
(
max{y2(t), 10−3}

)
, y1(0) = 1,

y′2(t) = −2ty2(t)log
(
max{y1(t), 10−3}

)
, y2(0) = e,
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with the exact solution y1(t) = exp
(
sin(t2)

)
, y2(t) = exp

(
cos(t2)

)
.

TWOB - The two body problem in the integration interval [0, 20] with eccentricity
ε = 3

10
(cf., e.g., [20, 29])

y′1(t) = y3(t), y1(0) = 1− ε,

y′2(t) = y4(t), y2(0) = 0,

y′3(t) =
−y1(t)

[y21(t) + y22(t)]
3/2

, y3(0) = 0,

y′4(t) =
−y2(t)

[y21(t) + y22(t)]
3/2

, y4(0) =

√
1 + ε

1− ε
.

3.3. Comparison with parallel codes

We compare the fourth-order EPThRK4 and sixth-order EPThRK6 methods
proposed in this paper with parallel sixth-order PIRK6 and eighth-order PIRK8 codes
proposed in [20]. The PIRK codes are recognized as one of the most reliable and efficient
parallel codes available in the literature. The codes PIRK6, PIRK8 are implemented with
TOL = 10−2, 10−4, . . . , 10−12 and the methods EPThRK4, EPThRK6 are implemented
with fixed stepsize h = 1/20j, j = 1, . . . , 8 (for JACB, TWOB) and h = 1/5j, j =
1, . . . , 8 (for FEHL). The values of NCD are plotted as a function of the values of NFUN
in Figures 1-3.

Figure 1. Comparison with parallel codes for JACB
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Figure 2. Comparison with parallel codes for FEHL

Figure 3. Comparison with parallel codes for TWOB
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For the problem JACB, the NCDs and NFUNs presented in Figure 1 clearly
show that the EPThRK6 method is by far superior to PIRK6 and PIRK8 codes. In the
low and middle accuracy range, EPThRK4 method is also more efficient than PIRK6 and
PIRK8 codes

For the problem FEHL, the NCDs and NFUNs presented in Figure 2 show that
EPThRK4 and EPThRK6 methods are much superior to PIRK6 and PIRK8 codes.

For the problem TWOB, the NCDs and NFUNs are presented in Figure 3 giving
us nearly the same conclusions as formulated in the case of JACB.

3.4. Comparison with sequential codes

In Section 3.3, the fourth-order EPThRK4 and sixth-order EPThRK6 methods were
compared with the sixth-order PIRK6 and eighth-order PIRK8 codes. In this section, we
shall compare these EPThRK4 and EPThRK6 methods with some of the best sequential
nonstiff codes currently available, that is the three codes ODEX, DOPRI5 and DOP853.
The code ODEX is an extrapolation-algorithm based on explicit midpoint rule. It was
coded by Hairer and Wanner (see [3, Section II.9]). The codes DOPRI5 and DOP853
are embedded in explicit RK methods due to Dormand and Prince. They are based on
the pair 5(4) and the “triple” 8(5)(3), respectively. The DOPRI5 and DOP853 codes also
were coded by Hairer and Wanner (see [4]). DOP853 is the new version of DOPRI8
with a “stretched” error estimator (see [4, p. 254]). These three codes belong to the most
efficient currently existing sequential codes for nonstiff first-order ODE problems.

We applied the methods EPThRK4, EPThRK6 and the codes ODEX, DOPRI5
and DOP853 with ATOL = RTOL = 10−2, 10−4, . . . , 10−12 to the above three test
problems. The obtained NCD and NFUN values are plotted in Figures 4-6.

Figure 4. Comparison with sequential codes for JACB
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Figure 5. Comparison with sequential codes for FEHL

Figure 6. Comparison with sequential codes for TWOB

Looking at Figure 4, Figure 5 and Figure 6, we see that the EPThRK4 and
EPThRK6 methods are shown to be more efficient than ODEX, DOPRI5 and DOP853
codes as in the case of comparisons with parallel codes (see Section 3.3).

4. Conclusions
In this paper, we considered explicit pseudo three-step RK methods (EPThRK

methods) which are suitable for use on parallel computers. The resulting EPThRK
methods are very competitive numerical integrators in terms of computational cost. After
two first steps, the methods require only one sequential f − evaluation per step. We
have compared the new EPThRK methods with the most efficient parallel and sequential

14



Explicit pseudo three-step Runge-Kutta methods for nonstiff initial value problems

numerical codes available in recent literarure by applying them to the numerical solution
of well-known test problems. In spite of the fact that the results of parallel and sequential
codes are obtained by using a stepsize strategy, whereas the EPThRK4 and EPThRK6
methods are applied with fixed stepsizes, it is the EPThRK4 and EPThRK6 methods that
are the most efficient.
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