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Abstract. In this paper, we propose a splitting method for finding a zero point
of the sum of two operators in Hilbert spaces. Our method is a modification
of the forward-backward algorithm by using the inertial effect. Under the
imposed condition for parameters, weak convergence of the iterative sequence
is established. We also give some numerical experiments to demonstrate the
efficiency of the proposed algorithm.
Keywords: monotone inclusion, splitting method, inertial effect,
forward-backward algorithm.

1. Introduction
In this paper, we consider the problem of finding zero points of the sum of a

maximal monotone operator A and a monotone, L−Lipschitzian operator B, acting on
a real Hilbert space H. The problem is specified as

find x ∈ H such that 0 ∈ (A+B)x. (1.1)

Throughout this paper, we assume that a solution x exists. This inclusion arises
in numerous problems in monotone operator theory, variational inequalities, convex
optimization, equilibrium problems, image processing, and machine learning; see [1]-[10]
and the references therein.

There are many methods for solving problem (1.1). These methods
exploit the splitting structure of (1.1) to use individual operators A and B.
Classical methods include gradient, extragradient, past-extragradient, proximal-point,
forward-backward splitting, forward-backward-forward splitting, Douglas-Rachford
splitting, forward-reflected-backward splitting, reflected-forward-backward splitting,

3



Nguyen VD, Hoang TKH, Nguyen TH & Ha TT

golden ratio, projective splitting methods, and their variants, see for examples [5],
[11]-[15] for more details.

In this paper, we design a new method for solving problem (1.1). Our idea is
based on the forward-reflected-backward method, which is presented by Malitsky and
Tam in [14] and Polyak’s inertial technique [16]. In [14], the authors proposed the
forward-reflected-backward method (FRB), namely,

γ ∈ (0,+∞), xk+1 = JγA(xk − 2γBxk + γBxk−1). (1.2)

where JA denotes the resolvent of A, i.e.

JA = (Id+A)−1,

and Id is the identity operator on H.

In [16], Polyak introduced the so-called heavy ball method in order to speed up the
classical gradient method. For a differential function f : H → R, the algorithm takes the
following form:

xk+1 = xk + αk(xk − xk−1)− γk∇f(xk).

This idea is then employed and refined by some authors [17]-[20]. Our method also uses
the inertial effect to improve the performance of the algorithm. Unlike (1.2) which use
two values of operator B at each iteration, we use three values of B in each iteration.
Under some standard conditions, we also obtain the convergence of the proposed method.
In some examples, our method gives better convergence rate than Tseng’s method [12]
and the FRB method in [14].

2. Preliminaries
The scalar product and the associated norm of the real Hilbert space H are denoted

respectively by ⟨· | ·⟩ and ∥ · ∥.
The symbols ⇀ and → denote respectively weak and strong convergence.
Let A : H → 2H be a set-valued operator. The domain of A, denoted by

dom(A), is set of all x ∈ H such that Ax ̸= ∅. The range of A is defined by
ran(A) =

{
u ∈ H | (∃x ∈ H)u ∈ Ax

}
. The graph of A is denoted by gra(A) ={

(x, u) ∈ H ×H | u ∈ Ax
}

. A−1 stands for the inverse of A, i.e., A−1 : u 7→{
x | u ∈ Ax

}
. The zero set of A is zer(A) = A−10.

Definition 2.1. [11] We say that operator A : H → 2H is

1. monotone if(
∀(x, u) ∈ gra(A)

)(
∀(y, v) ∈ gra(A)

)
⟨x− y | u− v⟩ ≥ 0.
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2. maximally monotone if it is monotone and there exists no monotone operator
B : H → 2H such that gra(B) properly contains gra(A), i.e., there is no monotone
operator that properly contains it.

Definition 2.2. [11] A mapping T : H → H is said to be L-Lipschitz continuous (L > 0)
if

∥Tx− Ty∥ ≤ L∥x− y∥ ∀x, y ∈ H.

Definition 2.3. [11] For A : H → 2H, the resolvent of operator A is

JA = (Id+A)−1,

where Id denotes the identity operator on H.

Note that, when A is maximally monotone, JA is an everywhere single-valued
operator [11].

3. Proposed method and convergence
We propose the following method for solving problem (1.1).

Algorithm 3.1. Let γ > 0, and α ≥ 0. Let x−1, x0, x1 ∈ H. Iterate (∀k ∈ N)

xk+1 = JγA

[
xk + α(xk − xk−1)− γ

(5
2
Bxk − 2Bxk−1 +

1

2
Bxk−2

)]
. (3.1)

Let us give some comments on the above algorithm.

1. In (3.1), in each iteration, we have to calculate three forward values. However, in the
next iteration, we can use two forward values of the previous iteration. Therefore,
we actually only compute one forward value in every iteration.

2. When α = 0, B = 0, Algorithm 3.1 becomes the proximal point algorithm as
in [21].

To prove the convergence of Algorithm 3.1, we need the following lemma.

Lemma 3.1. Suppose that (xk)k∈N is the sequence generated by Algorithm 3.1. Then, for
any x ∈ zer(A+B), we get

∥xk+1 − x∥2 − α∥xk − x∥2 + 2γtk+1 +
(
1− α− 3γL

2

)
∥xk+1 − xk∥2

≤ ∥xk − x∥2 − α∥xk−1 − x∥2 + 2γtk + (2α + γL)∥xk − xk−1∥2 +
γL

2
∥xk−1 − xk−2∥2,

(3.2)

where tk = ⟨Bxk−1 −Bxk | xk − x⟩+ 1
2
⟨Bxk−1 −Bxk−2 | xk − x⟩ .
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Proof. From (3.1), we get

xk + α(xk − xk−1)− xk+1

γ
−
(5
2
Bxk − 2Bxk−1 +

1

2
Bxk−2

)
∈ Axk+1. (3.3)

For x ∈ zer(A+B), then −Bx ∈ Ax. Hence,〈
xk + α(xk − xk−1)− xk+1

γ
− 5

2
Bxk + 2Bxk−1 −

1

2
Bxk−2 +Bx | xk+1 − x

〉
≥ 0,

which implies 〈
xk − xk+1 + α(xk − xk−1)

γ
| xk+1 − x

〉
≥

〈
5

2
Bxk − 2Bxk−1 +

1

2
Bxk−2 −Bx | xk+1 − x

〉
. (3.4)

For the left-hand side of (3.4), we have

⟨xk − xk+1 + α(xk − xk−1) | xk+1 − x⟩
= ⟨xk − xk+1 | xk+1 − x⟩+ α ⟨xk − xk−1 | xk+1 − xk⟩+ α ⟨xk − xk−1 | xk − x⟩

=
1

2

(
∥xk − x∥2 − ∥xk+1 − x∥2 − ∥xk+1 − xk∥2

)
− α

2

(
∥xk−1 − x∥2 − ∥xk − x∥2 − ∥xk−1 − xk∥2

)
+ α ⟨xk − xk−1 | xk+1 − xk⟩ .

(3.5)

Using the monotonicity of B, we estimate the right-hand side of (3.4) as〈
5

2
Bxk − 2Bxk−1 +

1

2
Bxk−2 −Bx | xk+1 − x

〉
=

〈
5

2
Bxk − 2Bxk−1 +

1

2
Bxk−2 −Bx−Bxk+1 | xk+1 − x

〉
+ ⟨Bxk+1 −Bx | xk+1 − x⟩

≥ ⟨Bxk −Bxk+1 | xk+1 − x⟩+ 3

2
⟨Bxk −Bxk−1 | xk+1 − x⟩

− 1

2
⟨Bxk−1 −Bxk−2 | xk+1 − x⟩

= ⟨Bxk −Bxk+1 | xk+1 − x⟩+ 1

2
⟨Bxk −Bxk−1 | xk+1 − x⟩

+ ⟨Bxk −Bxk−1 | xk+1 − xk⟩+ ⟨Bxk −Bxk−1 | xk − x⟩

− 1

2

(
⟨Bxk−1 −Bxk−2 | xk+1 − xk⟩+ ⟨Bxk−1 −Bxk−2 | xk − x⟩

)
= tk+1 − tk + ⟨Bxk −Bxk−1 | xk+1 − xk⟩ −

1

2
⟨Bxk−1 −Bxk−2 | xk+1 − xk⟩ . (3.6)
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Hence, from (3.4), (3.5) and (3.6), we can deduce(
∥xk − x∥2 − ∥xk+1 − x∥2 − ∥xk+1 − xk∥2

)
− α

(
∥xk−1 − x∥2 − ∥xk − x∥2 − ∥xk−1 − xk∥2

)
≥ 2γtk+1 − 2γtk + 2γ ⟨Bxk −Bxk−1 | xk+1 − xk⟩
− γ ⟨Bxk−1 −Bxk−2 | xk+1 − xk⟩ − 2α ⟨xk − xk−1 | xk+1 − xk⟩ . (3.7)

Using Cauchy-Schwarz inequality and the Lipschitz property of B, we have

2| ⟨Bxk −Bxk−1 | xk+1 − xk⟩ | ≤ L(∥xk − xk−1∥2 + ∥xk+1 − xk∥2),

2| ⟨Bxk−1 −Bxk−2 | xk+1 − xk⟩ | ≤ L(∥xk−1 − xk−2∥2 + ∥xk+1 − xk∥2),

2| ⟨xk − xk−1 | xk+1 − xk⟩ | ≤ ∥xk − xk−1∥2 + ∥xk+1 − xk∥2.

Therefore, (3.7) implies that(
∥xk − x∥2 − ∥xk+1 − x∥2 − ∥xk+1 − xk∥2

)
− α

(
∥xk−1 − x∥2 − ∥xk − x∥2 − ∥xk−1 − xk∥2

)
≥ 2γtk+1 − 2γtk − γL(∥xk − xk−1∥2 + ∥xk+1 − xk∥2)

− γL

2
(∥xk−1 − xk−2∥2 + ∥xk+1 − xk∥2)− α(∥xk − xk−1∥2 + ∥xk+1 − xk∥2),

which is equivalent to

∥xk+1 − x∥2 − α∥xk − x∥2 + 2γtk+1 +
(
1− α− 3γL

2

)
∥xk+1 − xk∥2

≤ ∥xk − x∥2 − α∥xk−1 − x∥2 + 2γtk + (2α + γL)∥xk − xk−1∥2 +
γL

2
∥xk−1 − xk−2∥2.

The proof is completed.

The convergence of Algorithm 3.1 is presented in the following theorem.

Theorem 3.2. Let (xk)k∈N be the sequence generated by Algorithm 3.1 with α ∈ [0, 1
3
),

and assume that

γ <
1− 3α

3L
. (3.8)

Then (xk)k∈N converges weakly to x ∈ zer(A+B).
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Proof. For x ∈ zer(A+B), using (3.2), we obtain

∥xk+1 − x∥2 − α∥xk − x∥2 + 2γtk+1 + (2α +
3γL

2
)∥xk+1 − xk∥2 +

γL

2
|∥xk − xk−1∥2

≤ ∥xk − x∥2 − α∥xk−1 − x∥2 + 2γtk + (2α +
3γL

2
)∥xk − xk−1∥2

+
γL

2
∥xk−1 − xk−2∥2 −

(
1− 3α− 3γL

)
∥xk+1 − xk∥2. (3.9)

We denote

Sk = ∥xk−x∥2−α∥xk−1−x∥2+2γtk+(2α+
3γL

2
)∥xk−xk−1∥2+

γL

2
∥xk−1−xk−2∥2,

we rewrite (3.9) as

Sk+1 ≤ Sk −
(
1− 3α− 3γL

)
∥xk+1 − xk∥2. (3.10)

We now prove that (∀k ∈ N) Sk ≥ 0. Indeed, by the formula of tk, and by using
Cauchy-Schwarz inequality and the Lipschitz property of B, we get

2|tk| ≤ L(∥xk−1 − xk∥2 + ∥xk − x∥2) + L

2
(∥xk−1 − xk−2∥2 + ∥xk − x∥2).

Hence,

Sk ≥ ∥xk − x∥2 − α∥xk−1 − x∥2 + (2α +
3γL

2
)∥xk − xk−1∥2

− γL(∥xk−1 − xk∥2 + ∥xk − x∥2)− γL

2
∥xk − x∥2

≥
(
1− 3γL

2

)
∥xk − x∥2 − α∥xk−1 − x∥2 + 2α∥xk − xk−1∥2

= (1− 2α− 3γL

2
)∥xk − x∥2 + α(2∥xk − x∥2 + 2∥xk − xk−1∥2 − ∥xk−1 − x∥2)

≥ (1− 2α− 3γL

2
)∥xk − x∥2 ≥ 0. (3.11)

By combining (3.10), (3.11), and the condition (3.8), we get{
limk→+∞ ∥xk+1 − xk∥ = 0

∃ limk→+∞ Sk = ξ ∈ R.
(3.12)

It follows from (3.11) and (3.12) that the sequence (xk)k∈N is bounded and

lim
k→∞

Sk = lim
k→∞

(∥xk − x∥2 − α∥xk−1 − x∥2) = ξ.
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Let x⋆ ∈ H be a weak sequential cluster point of (xk)k∈N. Then there exists a subsequence
(xkn)n∈N that converges weakly to x⋆.
From (3.3), we have

xk + α(xk − xk−1)− xk+1

γ
−
(5
2
Bxk − 2Bxk−1 +

1

2
Bxk−2

)
+Bxk+1 ∈ (A+B)xk+1,

which is equivalent to

xk − xk+1

γ
+

α(xk − xk−1)

γ
− (Bxk −Bxk+1)−

3

2
(Bxk −Bxk−1)

+
1

2
(Bxk−1 −Bxk−2) ∈ (A+B)xk+1. (3.13)

Using the Lipschitz condition of B and limk→∞ ∥xk+1−xk∥ = 0, we see that the left-hand
side of (3.13) converges strongly to 0. By the result of [11, Corollary 24.4], we can
conclude that the sum A + B is maximally monotone, and hence, its graph is closed in
Hweak ×Hstrong [11, Proposition 20.33]. Therefore x⋆ ∈ zer(A+B).

Assume that (xkn)n∈N ⇀ x, (xln)n∈N ⇀ y. Then, we have

−
(
∥xk − x∥2 − α∥xk−1 − x∥2

)
+
(
∥xk − y∥2 − α∥xk−1 − y∥2

)
+ (∥x∥2 − α∥x∥2)− (∥y∥2 − α∥y∥2)
= 2

(
⟨xk | x− y⟩ − α ⟨xk−1 | x− y⟩

)
. (3.14)

Choosing k = kn and k = ln then taking limit both sides of (3.14) when n → ∞, we get

∥x− y∥2 − α∥x− y∥2 = 0,

which implies x = y. Therefore (xk)k∈N converges weakly to a point in zer(A+B). The
proof is completed.

Next, we consider some simple examples to illustrate the effectiveness of our
method. We compare our method to two methods: forward-backward-forward method
(FBF) in [12] and the forward-reflected-backward method (FRB) in [14].

Example 1: We consider problem (1.1) with H = Rn, Ax = 0, Bx = x and the
initial values x0 ∈ Rn, x1 = −x0

2
, x2 = x0

4
for all three methods. Note that 0 is the

unique solution of (1.1) and B is 1−Lipschitz.
FBF method: xk+1 = (1 − γ + γ2)xk for γ < 1. The optimal stepsize is γ = 1

2
which

gives a rate of 3
4
.

FRB method: xk+1 = (1 − 2γ)xk + γxk−1 for γ < 1
2
. The optimal stepsize is γ ≈ 1

2

which gives a rate of 1√
2
.

Our method: We Choose α = 1
10
, γ = 18

85
, then (3.1) becomes

xk+1 =
97

170
xk +

11

34
xk−1 −

9

85
xk−2.
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The proposed method is xk =
x0

(−2)k
which gives a rate of 1

2
. We see that 1

2
< 1√

2
< 3

4
,

therefore the proposed method in this paper converges faster FBF and FRB methods for
this particular problem.

The convergence of the three methods are illustrated in Figure 1. Note that, in this
case, FBF and FRB methods are optimally selected, i.e., the stepsize is equal 1

2
is optimal.

Figure 1. Convergence of the iteration of three methods

Example 2: Consider problem (1.1) with H = R2, A(z1, z2) = (0, 0), B(z1, z2) =
(z2,−z1). The convergence of FBF, FRB and Algorithm 3.1 are illustrated in Figures 2
and 3. In this case, we consider a common value of γ for three methods. We see that the
convergence of our method is the same as FRB and faster than FBF method.

Figure 2. Convergence of the iteration of three methods
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Figure 3. Convergence of the iteration of three methods

Example 3: We consider Example 2 again: H = R2, A(z1, z2) = (0, 0),
B(z1, z2) = (z2,−z1). The convergence of FBF, FRB and Algorithm 3.1 with the different
initial values are illustrated in Figures 4 and 5. In this case, we choose α = 0, γ = 1/7
for Algorithm 3.1 and γ = 1/9 for the other two methods. We see that the convergence
of our method is faster than the two other methods. For all the other initial values, the
convergence of three methods is the same as shown in Figures 4 and 5

Figure 4. Convergence of the iteration of three methods
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Figure 5. Convergence of the iteration of three methods

4. Conclusions
The paper has proposed an inertial splitting method for finding a zero point of the

sum of a maximally monotone and a monotone-Lipschitz one. Under suitable conditions
of the parameters, we have proved weak convergence of the algorithm. In some special
cases, the proposed method converges faster than some known methods.
Acknowledgements. This research is funded by the University of Transport and
Communications (UTC) under grant number T2025-CB-005.
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