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Abstract. Nowadays, managing and allocating resources for projects has become 

increasingly essential for managers. A critical factor affecting the success of a project 

is the work assignment plan for workers to optimize the completion time. Current 

solutions to project scheduling problems have not been thoroughly addressed; thus, 

in this study, we model the labor assignment process in project production as a 

scheduling problem. To solve this problem, we use an improved genetic algorithm 

named GA-RT (Genetic Algorithm with Random Crossover and Negative 

Tournament Selection) and conduct experiments on the iMOPSE standard dataset. 

Experimental results show that the proposed GA-RT algorithm can effectively solve 

the project scheduling problem, achieving better performance compared to 

existing algorithms. 

Keywords: project scheduling, scheduling problem, genetic algorithm. 

1. Introduction 

In industrial production, scheduling workers to perform tasks (Figure 1) is an 

essential issue. Optimizing the time to complete a product helps save project production 

time. The plan to assign tasks to workers, ensuring that the priority of tasks and the goal 

of completing the task in the shortest time are satisfied, is called a schedule. In reality, 

any task can be performed by several workers with corresponding expertise; a more 

skilled worker can complete the task earlier. Additionally, some tasks can only start when 

the previous tasks are completed. From the above practical problem, a suitable problem 

model is needed to find the optimal solution. 
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The Real-Resource Constrained Project Scheduling Problem (Real-RCPSP) [1] is a 

project scheduling problem extended from the original Multi-Skill RCPSP (MS-RCPSP) 

problem [2]-[5] to schedule projects with limited resources and multiple skills. Real-

RCPSP adds constraints on resources based on the skill level required by the task; if the 

resource performing the task has a higher skill level than required, the task execution can 

be faster [1]. MS-RCPSP has been proven to be an NP-Hard problem [2], [6], [7], and 

many studies [4], [8], [9] have utilized Genetic Algorithms [10] to address this problem, 

including contributions from several research groups. 

Myszkowski et al. [8], [9] built and published the iMOPSE standard dataset [8] to 

replace the PSPLIB dataset [11], adding an information field on task execution costs. The 

iMOPSE dataset has been recognized and widely used in subsequent publications, along 

with the GA Runner toolkit to run and verify the results of the MS-RCPSP problem.  

The Hosseinian group [4], [12], with research results published [10], used the 

classical GA algorithm combined with the Shannon-entropy information measure-based 

decision-making method to select individuals for the next generation to solve the Multi-

Mode Multi-Skilled RCPSP problem (MMS-RCPSP), a variant of the MS-RCPSP 

problem that adds a regime constraint and cannot be changed once the execution process starts.  

In studies [5], [13], this group of authors used the Dandelion Algorithm to solve the 

MS-RCPSP problem [13] and the Pareto-based Grey Wolf Optimizer algorithm for the 

multi-objective MS-RCPSP problem with two objective functions: project 

implementation time and cost [2]. The later studies of this group all used the iMOPSE 

standard dataset for experimentation and verification. Most studies focus on the MS-

RCPSP problem and only address the theoretical model, which is not linked to reality. 

This is evident in the mathematical statement of the MS-RCPSP problem, where the task 

execution time is constant, regardless of which resource performs the task. 

To overcome the above drawbacks, the Real-RCPSP problem has been formulated 

to be more suitable for real projects. In this paper, we propose a new solution for the Real-

RCPSP problem to increase the efficiency of project execution schedules. The main 

contributions include: (i) modeling the production project scheduling problem in reality, 

and (ii) proposing the GA-RT (Genetic Algorithm with Random Crossover and Negative 

Tournament Selection) algorithm to find the optimal solution, helping project managers 

develop time-saving plans during the project coordination process. The rest of this paper 

is structured as follows. The next section presents the mathematical formulation of the 

Real-RCPSP problem, emphasizing the aspects that make this model more realistic than 

the MS-RCPSP model. Section 3 describes the proposed GA-RT algorithm in terms of: 

(i) Increasing the efficiency of crossover by using the Random function;  

(ii) Using the Negative Tournament Selection method to remove defective 

individuals and increase the efficiency of mutation operations; 

(iii) Individual representation, objective function, and pseudocode of GA-RT. 

Section 4 presents and analyzes the experimental results, demonstrating the advantages 

of the proposed algorithm compared to the previously most efficient GA Runner toolkit 

[8], [9]. 
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2. Content  

2.1. GA-RT algorithm solving the REAL-RCPSP problem 

Scheduling is a practical issue with many implications in daily life. The scheduling 

problem is always challenging because, to achieve desired results, the scheduler must try 

many different methods to properly utilize human power, resources, tools, machines, etc. 

In particular, the Real-RCPSP scheduling problem focuses on two factors: resources and 

tasks (Figure 1). 

 
Figure 1. Simulation of the scheduling process for workers to perform jobs 

2.1.1. Problem statement 

In actual production, workers with higher skills and experience often complete work 

more quickly or produce better-quality products than lower-skilled workers. Therefore, 

in the Real-RCPSP problem, the objective function (project execution time) is calculated 

based on the worker's skill level; if the worker performing the task has a higher skill level 

than required, the task completion time can be faster. 

* Components of the Real-RCPSP problem 

- X = {A0 ,...,An+1 }: set of tasks to be performed. In which, A1 ,..., An are tasks to be 

performed; A0, An+1 are two hypothetical tasks, added to serve the purpose of 

determining the start time and end time of the project; A = {A1 ,..., An } set of tasks to be 

performed. 

- F: Set of priorities, (A i , A j ) ∈ F, task Ai is performed before task Aj. 

- Ti : Set of tasks finished before starting time of task I. 

- Ak : List all resource tasks that resource k can perform, Ak A. 

- n: Number of tasks; Nr: Number of resources. 

- g = {g0 , g1 ,..., gn+1 } execution time of tasks. 

- gi : Execution time of Ai. Special values: g0 = gn+1 = 0. 

- gjk : Execution time of task j by resource k , the execution time of the same task 

can be different with different execution resources. 

- Ci: Start time of task i; Di: Time to complete task i, easy to see: Di = Ci + gi. 

- Xs = {Ai ∈ A| Ci ≤ s < Ci +gi }: the set of tasks are being performed at time s. 

- N: Set of resources , N = {N1 , N2 ,..., Nk } that can all be reused. 

- Nk: List all resources that can perform task k ; Nk N. 

- H = {H1 ,..., Hk } is a set containing information about resource capacities, Hk 

represents the capacity of Nk . 

- mik : The number of resources m k mobilized to perform Ai . 

- K: Set of all skills; Kp: Sub set of skills of resource p, K p K. 
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- Ki: Skill i; li: Skill level of skill i; qi: Skill type i. 

- zi: Set of skills required by task i. A resource can perform a task if its skill level is 

equal to or higher than the skill level required by the task. 

- Gu,v 
i: Boolean variable that determines whether resource v is performing task u at 

time i;  t: Makespan of the schedule, t = Dn+1   is the end time of the last task. 

- R: A satisfying solution; Rall : The set of all satisfying solutions, Rall ⊆ R. 

- f (R): Objective function, to calculate the makespan of R. 

The Real-RCPSP problem aims to find a schedule R such that f(R) → min  

Subject to the constraints: 

Cj – Ci ≥ gi     (Ai, Aj)  F    (1) 

∑ 𝐻𝑖𝑛𝐴𝑖𝑋𝑠 ≤ 𝐻𝑛      𝑁𝑛 ∈ 𝑁, ∀𝑠 ≥ 0   (2) 

Ki        Nk  N    (3) 

gjk  0      Aj A,  Nk N   (4) 

Dj  0      AjA    (5) 

Di  Dj - gj    AjA, j1, WiTj   (6) 

 A𝑖 ∈ 𝐴𝑘  ∃ 𝐾𝑞 ∈ 𝐾𝑖 ∶ 𝑞𝑘𝑖
= 𝑞𝑧𝑖

 and 𝑙𝑘𝑖
≥ 𝑙𝑧𝑖

                  (7) 

 𝑁𝑘 ∈ 𝑁, ∀𝑠 ∈ 𝑡 ∶ ∑ 𝐺𝑖,𝑘
𝑠𝑛

𝑖=1 ≤ 1                  (8) 

 𝐴𝑗 ∈ 𝐴 ∃! 𝑠 ∈ [0, 𝑡], !  𝑁𝑘 ∈ 𝑁: 𝐴𝑗,𝑘
𝑠 = 1; 𝑤𝑖𝑡ℎ 𝐺𝑗,𝑘

𝑠 ∈ {0; 1}     (9) 

𝑔𝑗𝑘 ≤ 𝑔𝑗𝑢 𝑤𝑖𝑡ℎ 𝑙𝑘 ≤ 𝑙𝑢               (𝑧𝑖, 𝑧𝑢) ∈ {𝐾𝑖 × 𝐾𝑢 }            (10) 

* Description of constraints 

Constraint (1) shows the priority order between two parent tasks (task i) and child 

tasks (task j); task j only starts when task i finishes, and child tasks may not be performed 

immediately after parent tasks finish. Constraint (2) shows that the number of resources n 

used to perform task i at time s is at most equal to the resource n 's capacity. Constraint (3) 

states that each resource must have at least one skill. Constraints (4) and (5) require that 

the execution time of any task must be at least zero. Constraint (6) requires that the parent 

task (task i) must finish before the child task (task j) starts. Di denoted the time when task i 

finishes, and when child task j starts, it is Di - gj.  

Constraint (7) for every task i  Ak (set of tasks that resource k can perform), there 

always exists skill K  K i (skill set of resource k) such that 𝑞𝑘𝑖
= 𝑞𝑧𝑖

: skill type of z 

coincides with the skill type of Ni that task i requires. Inequality 𝑙𝑘𝑖
≥ 𝑙𝑧𝑖

 means that to 

perform the task's requirements, the resource must have a skill level greater than or equal 

to the given requirement. Constraint (8) at each time point (s), each task has only one 

resource to execute; if ∑ 𝐺𝑖,𝑘
𝑠 =𝑛

𝑖=1 0 , then resource k is not assigned to any task; if 

∑ 𝐺𝑖,𝑘
𝑠𝑛

𝑖=1 =1 then resource k is assigned to a single task. Constraint (9) states that each 

task is assigned to only one resource and can be performed by only one resource. The 

final constraint (10) is a new development of the Real-RCPSP problem compared to the 

MS-RCPSP problem. This constraint states that the higher the skill level of the resource, 

the shorter the task execution time. 
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2.1.2. Proposed algorithm 

The Real-RCPSP problem is a large-scale problem with many constraints, so this 

paper proposes an improved genetic algorithm named GA-RT (Genetic Algorithm with 

Random Crossover and Negative Tournament Selection), incorporating two techniques 

(Figure 2) to enhance efficiency as follows: 

First, in the individual crossover step, instead of using traditional crossover operators, 

GA-RT iterates through each task sequentially. For each task in the parent individuals, it 

uses a Random function: 

- If Random (0;1) ≥ 0.5, take the parent's resources to crossbreed to create the child; 

- If Random (0;1) < 0.5, take the resource of the other parent to create the child. 

Using the Random function to combine favorable traits from parent individuals helps 

explore a broader solution space, maintain diversity in the population, and foster 

innovation, thereby improving the quality of solutions over generations and avoiding 

convergence to suboptimal local solutions. 

Second, after the mutation step, GA-RT uses the Negative Tournament Selection 

method to eliminate flawed individuals by comparing the new offspring with the 

original parents: 

- If the new child is not as good as the original parents, discard the new child; 

- Correspondingly, eliminate the worst individual among the three: the new offspring 

and the original parents. 

 

 
Figure 2. A description of the improvement 

Applying Negative Tournament Selection at this point helps maintain genetic 

diversity in the population because the technique not only focuses on selecting the best 

individuals but also ensures that the worst individuals are eliminated, which prevents the 
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poor individuals from negatively affecting the next generations. Eliminating the poor 

individuals reduces the risk of the population falling into suboptimal local convergence points. 

* Steps to implement the algorithm 

- Solution representation: To represent an individual, a one-dimensional vector 

(Table 1) must be used with: (i) each element in the vector corresponds to a project task 

and (ii) the value of each element is conventionally assigned by the index of the element. 

The individual vector meets the requirements when it satisfies the problem's constraints. 

Two factors must be considered for building a suitable individual: (i) the resources used 

must meet the standard time to perform the task (minimum time), and (ii) the capacity of 

the resource must meet the requirements of the given task.  

- Objective function: f(R), was descripted in section 2.1.1. 

- Random initialization method: Individuals are created completely randomly: (1) 

Create a list of resources that can perform each task; → (2) For each task, randomly select 

a resource from the list created in step 1; → (3) Repeat step 2 with the remaining tasks in 

the schedule; → (4) A new individual is created after each individual has its 

corresponding worker. 

- Individual selection: The mating parent pairs are randomly selected from the 

population; random selection helps maintain genetic diversity, creating a balance between 

exploiting existing good individuals and exploring new potential solutions, thereby 

increasing the chance of finding the global optimal solution. 

- Crossbreeding: For ensuring genetic diversity, the GA-RT algorithm performs 

crossbreeding as follows: (1) Browse the tasks in turn at both the parent and child 

individuals; → (2) Select the resource to perform the corresponding task using the 

Random function. If Random (0;1) >= 0.5, take the resources of the parent individual to 

crossbreed to create a child individual; otherwise, take the resources of the parent 

individual; → (3) The child individual created randomly has the characteristics of both 

the parent and child. 

- Mutation: The mutation probability is set to 0.05 to avoid changing the population's 

genetic structure. (1): Randomly select tasks to mutate at a rate of 0.05 (that is, assuming 

an individual has 100 tasks, select five tasks to mutate); → (2) Randomly select a resource 

from the available resource set for each selected task; → (3) The child individual created 

is of course satisfied because it is randomly mutated within the constraint. 

- Negative Tournament Selection Method: As a variation of Tournament Selection, 

Negative Tournament Selection helps create diversity in the population and makes the 

evolution of the population smoother. Implementation steps: (1) Compare the new 

offspring after mutation with the original parents; → (2) Select and eliminate the worst 

individuals out of the three individuals; → (3) Add the remaining two individuals to 

the population. 

- Replacement: Newly generated individuals replace old individuals after re-

evaluating the new population using the fitness function, thereby forming a new 

population for the next generation. 

The overall GA-RT algorithm (Figure 3) is depicted as follows: 
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Begin 

Initialize the population by using a random method 

Population assessment using the fitness function 

Repeat 

Randomly select two individuals for crossbreeding; 

Perform re-mapping with random cross probability; 

Perform random mutation; 

Negative Tournament Selection Method; 

Re-evaluate the new population using the fitness function; 

Replace; 

Until the stopping condition is satisfied 

Return the best individual in the population 

End 

 

Figure 3. GA-RT algorithm 

2.2. Experiment 

To verify the effectiveness of the GA-RT algorithm, we conducted experiments using 

the published iMOPSE [4], and [5] dataset, which has been widely used by research 

groups. The iMOPSE dataset includes 30 files; the information fields include Task, 

Resource, Precedence Relation, and Skill. To match the actual production scenarios of 

the iMOPSE dataset, the calibrated iMOPSE dataset was processed as follows: (1) Level 1: 

For resources with skill levels equal to or higher than level 1, the execution time remains 

unchanged. (2) Level 2: For resources with skill levels 2 and 3, the task execution time is 

decreased by 5% compared to the standard time. (3) Level 3: For resources with skill 

levels from 4 to 7, the task execution time is reduced by 7% compared to the standard time.  

Experimental parameters: Initial population initialization with 50 individuals; 

Number of evolutionary generations: 5000; Number of experimental runs on each data 

set: 20. The experiment was conducted in the Java environment; the experimental 

computer has an Intel(R) Core(TM) i3-10105F CPU configuration, 3.7 GHz speed, 16GB 

RAM, Windows 10 Pro (64 bit) operating system. 



Do BC, Tran TM, Dang QH* & Nguyen TL 

64 

 

Table 1. Comparison results 

 

No. 

 

 

Dataset 

 

Best Avg Std 

GA-

RUNNER 

GA-

RT 

GA-

RUNNER 
GA-RT 

GA-

RUNNER 
GA-RT 

1 Dataset 01 503 487 507 500 3.1 7.9 

2 Dataset 02 574 533 579 546 4 7.1 

3 Dataset 03 528 491 533 493 4.5 1.6 

4 Dataset 04 520 483 530 488 9.5 4.5 

5 Dataset 05 504 475 507 478 2.7 2.5 

6 Dataset 06 277 242 279 254 2 7.5 

7 Dataset 07 286 261 294 270 7.2 8.9 

8 Dataset 08 276 251 284 257 7.5 3.9 

9 Dataset 09 291 252 301 263 8.7 6.4 

10 Dataset 10 276 251 281 258 4.3 4.0 

11 Dataset 11 157 141 163 152 4.7 6.6 

12 Dataset 12 185 159 190 170 5.1 6.5 

13 Dataset 13 179 143 181 155 2.3 7.7 

14 Dataset 14 234 276 241 276 6.8 0.0 

15 Dataset 15 173 137 181 156 6.9 8.8 

16 Dataset 16 562 495 568 508 5 9.2 

17 Dataset 17 546 492 550 501 2.9 6.1 

18 Dataset 18 580 491 581 504 1.3 8.7 

19 Dataset 19 556 488 568 506 11 11.5 

20 Dataset 20 546 485 550 491 2.7 4.9 

21 Dataset 21 317 254 324 270 7.3 8.6 

22 Dataset 22 349 280 356 300 5.6 12.9 

23 Dataset 23 300 274 306 285 5.1 10.6 

24 Dataset 24 422 371 426 371 3.4 3.1 

25 Dataset 25 310 264 317 280 6.8 13.7 

26 Dataset 26 210 172 219 188 8.8 11.4 

27 Dataset 27 190 160 194 177 3.4 8.7 

28 Dataset 28 202 171 216 189 12.6 11.9 

29 Dataset 29 207 171 211 188 3.7 12.5 

30 Dataset 30 187 170 193 182 5.7 8.8 

The experimental results in Table 1 show that the GA-RT algorithm consistently 

achieves better Best values than the GA-RUNNER in 29 out of 30 cases. The 

improvement ranges from approximately 3.18% to 20.87%, with GA-RT being, on 

average, 10% to 15% faster than GA-RUNNER in most datasets. Regarding the average 
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(Avg) values, GA-RT also outperforms GA-RUNNER in 29 out of 30 cases, with 

improvements up to 16.66%. The standard deviation (Std) values indicate that GA-RT 

has a minor standard deviation, demonstrating that the GA-RT results are more stable 

than those of GA-RUNNER in many cases. Notably, in one case, the GA-RT algorithm 

has a standard deviation of 0.0, indicating absolute stability. 

With the Random function combined with Negative Tournament Selection, the GA-

RT algorithm becomes powerful in project optimization. The GA-RT algorithm leverages 

the superior characteristics of parent individuals to create offspring with higher 

optimization ability while maintaining diversity in the population. This approach helps 

explore a broader solution space and prevents convergence to suboptimal solutions. 

Additionally, Negative Tournament Selection eliminates weak individuals, ensuring that 

they do not negatively impact subsequent generations. As a result, genetic diversity and 

solution quality are maintained and improved through each generation, enabling the 

population to continuously evolve and avoid getting stuck in inefficient local 

convergence points. 

3.   Conclusions 

This study presents the GA-RT algorithm for addressing the current project resource 

scheduling problem. The GA-RT algorithm is improved from the traditional GA by 

incorporating a Random function in the crossover process and utilizing the Negative 

Tournament Selection technique to enhance the quality of solutions. Experiments on the 

iMOPSE dataset demonstrate that our algorithm finds better solutions and is more stable 

than previous algorithms. The main contribution of this paper is the proposal, 

development, and validation of a new algorithm to improve efficiency in managing 

projects with multiple resources, thereby helping managers optimize time and cost. In the 

future, research will be extended by applying Deep Reinforcement Learning (DRL) 

mechanisms to improve the convergence speed and solution quality of the algorithm, 

making it better suited to meet the requirements of practical projects. Another potential 

research direction is to enhance the algorithm and apply it to multi-objective 

scheduling problems. 
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