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Abstract. The problem of robust stability is investigated for a class of uncertain
Hopfield-type neural networks with proportional delays. The existence and
uniqueness of an equilibrium is first established using the homeomorphic mapping
theorem. Then, by employing a modified Lyapunov–Krasovskii functional, a new
criterion for the global asymptotic stability of an equilibrium point of the system is
formulated.
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1. Introduction
Neural networks models, including biology and artificial models, are widely used

to described dynamics of various real-world phenomena. Applications of artificial neural
networks models can be found, for example, in image realization and processing, time
series forecasting, speech recognition, or pattern recognition for medical visualization
aids [1]-[4]. In real-world applications of neural networks, the existence, uniqueness and
long-term behavior, typically asymptotic stability, of a unique equilibrium [5] are essential
aspects. Futhermore, due to many technical reasons such as the limit of switching speed
of amplifiers or the signal processing transmission through layers, the implementation of
neural networks is often encountered with time delays. The presence of delays usually
makes the behavior of the system more complicated and unpredictable [6], [7]. Thus,
over the past few decades, remarkable research attention has been devoted to the study of
performance analysis and synthesis of neural networks with delays [8]-[11]

On the other hand, in electronically implemented neural networks, beside the
affect of time-delay, the interconnection coefficients involved in neural systems are also
unavoidably disturbed by external effects. Thus, the robust stability of neural networks
against such perturbations must be examined [12]. There are different approaches to
modeling neural networks with uncertainties of which the interval uncertainty is one of
the most commonly used methods [13].
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Different from existing works, in this paper, we consider the problem of robust
stability of uncertain Hopfield neural networks with proportional delays. As discussed in
the literature [14], proportional delays belong to a special class of unbounded delays, by
which the analysis is much more challenging than bounded delay terms. First, by utilizing
the homeomorphic mapping theorem in nonlinear analysis, tractable conditions for the
existence and uniqueness of an equilibrium point (EP) are derived. Then, based on a
type of modified Lyapunov-Krasovskii functionals, new criteria for the global asymptotic
stability of a unique EP of the system are formulated.

Notation. Rn is the Euclidean space with the vector norm ∥x∥ =
√∑n

i=1 x
2
i , Rn

+ =
{x ∈ Rn : x ⪰ 0}, and |x| = (|xi|) ∈ Rn

+ for a vector x = (xi) ∈ Rn. For any vectors
x, y ∈ Rn, x ⪯ y if xi ≤ yi and x ≺ y if xi < yi for all i ∈ [n] := {1, 2, . . . , n}.
The absolute of a matrix A = (aij)n×n is denoted by |A| = (|aij|)n×n; A is nonnegative,
A ⪰ 0, if aij ≥ 0 and A is positive, A ≻ 0, if aij > 0 for all i, j. λM(A⊤A) and
λm(A

⊤A) denote the maximum and the minimum real part of eigenvalues of the matrix
A⊤A, respectively. ∥A∥2 = [λM(A⊤A)]1/2 denotes the spectra norm.

2. Preliminaries
Consider the following Hopfield-type neural system with heterogeneous

proportional delays

ẋi(t) = −cixi(t) +
n∑

j=1

aij f̃j(xj(t)) +
n∑

j=1

adij f̃j(xj(pijt)) + Ii, i ∈ [n], t ≥ 1, (2.1)

where n represents the number of neurons, xi(t) is the state of ith neuron at time t, ci
represents the charging rate of neuron ith, and Ii is external input. The system coefficients
aij , adij , i ∈ [n], are neural connection weights, 0 < pij < 1 represent proportional delays
according to pijt = t− (1− pij)t, f̃j(.), j ∈ [n], are neural activation functions.

We assume that the connection weights ci, aij and adij in system (2.1) are uncertain
and bounded. More precisely, the system matrices are assumed to belong to the intervals

CI := [C,C] = {C = diag{ci} : 0 < ci ≤ ci ≤ ci, i ∈ [n]},
AI := [A,A] = {A = (aij)n×n : aij ≤ aij ≤ aij, i ∈ [n], j ∈ [n]},

Ad
I := [Ad, A

d
] = {Ad = (adij)n×n : adij ≤ adij ≤ adij, i ∈ [n], j ∈ [n]}, (2.2)

Assumption (A1): The neuron activation functions f̃j(.), j ∈ [n], are continuous
and there exist constants l−jf , l+jf that satisfy the following condition

l−jf ≤ f̃j(a)− f̃j(b)

a− b
≤ l+jf , ∀a ̸= b. (2.3)
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Remark 2.1. By Assumption(A1), the functions f̃(x) = (f̃j(xj))
⊤, x = (xj)

⊤, j ∈ [n],
satisfies the following inequalities

|f̃j(a)− f̃j(b)| ≤ Fj|a− b| for all a, b ∈ R, a ̸= b,

where Fj = max{l+jf ,−l−jf}. Hereafter, we denote the matrix F = diag{Fj}.

Definition 2.1. A point x∗ ∈ Rn is said to be an EP of system (2.1) if it holds that

−Cx∗ + Af̃(x∗) + Adf̃(x∗) + I = 0. (2.4)

Definition 2.2. System (2.1) with uncertain matrices defined by (2.2) is said to be
globally asymptotically robust stable if the unique EP x∗ ∈ Rn of (2.1) is GAS (globally
asymptotically stable) for all C ∈ CI , A ∈ AI , and Ad ∈ Ad

I .

The following technical lemmas will be useful for our next derivation.

Lemma 2.1. For any x, z ∈ Rn and positive scalar ϵ, the following inequality holds

2x⊤z ≤ ϵx⊤x+ ϵ−1z⊤z.

Lemma 2.2. Let A = (aij)n×n ∈ AI . For any positive matrices M = diag{mi}, i ∈ [n],
scalar α > 0, and vectors u = (ui) and v = (vj) in Rn, the following inequality holds

2u⊤MAv ≤ αm∗
n∑

i=1

u2
i + α−1m∗

n∑
j=1

hjv
2
j

= m∗
(
αu⊤u+ α−1v⊤Hv

)
, (2.5)

where m∗ = maxi∈[n]{mi}, H = diag{hj}, hj =
∑n

i=1 (âij
∑n

l=1 âil), j ∈ [n], with
âij = max{|aij|, |aij|}.

Proof. For a matrix M = diag{mi} ≻ 0, we have

2u⊤MAv ≤ 2|u⊤||M ||A||v| = 2
n∑

i=1

n∑
j=1

mi|aij||ui||vj|

≤ 2m∗
n∑

i=1

n∑
j=1

|aij||ui||vj| = 2m∗|u⊤||A||v|.

By Lemma 2.1,
2|u⊤||A||v| ≤ αu⊤u+ α−1|v⊤||A⊤||A||v|,
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and hence

|v⊤||A⊤||A||v| =
n∑

j=1

(
n∑

i=1

|aij||aij|

)
v2j +

n∑
j=1

n∑
l=j+1

(
n∑

i=1

2|aij||ail||vj||vl|

)

≤
n∑

j=1

(
n∑

i=1

|aij||aij|

)
v2j +

n∑
j=1

n∑
l=j+1

(
n∑

i=1

|aij||ail|(v2j + v2l )

)

=
n∑

j=1

( n∑
i=1

|aij||aij|
)
v2j +

n∑
j=1

( n∑
i=1

|aij|
n∑

l=1,l ̸=j

|ail|
)
v2j

=
n∑

j=1

( n∑
i=1

|aij|
n∑

l=1

|ail|
)
v2j

≤
n∑

j=1

( n∑
i=1

âij

n∑
l=1

âil

)
v2j =

n∑
j=1

hjv
2
j = v⊤Hv.

The last inequality shows that

2u⊤MAv ≤ m∗ (αu⊤u+ α−1v⊤Hv
)

as desired.

In the remaining of this section, we recall an additional auxiliary result, which will
be used to derive existence conditions. A mapping F : Rn → Rn is said to be proper if
the pre-image F−1(K) is compact for any compact K ⊂ Rn. It is clear that a continuous
mapping F : Rn → Rn is proper if and only if, for any sequence {pk} ⊂ Rn, ∥pk∥ → ∞,
it holds that ∥F(pk)∥ → ∞ as k → ∞.

Lemma 2.3. (see [15]) A locally invertible continuous mapping F : Rn → Rn is a
homeomorphism of Rn onto itself if and only if it is proper.

3. Main results
3.1. Equilibrium

To facilitate in presenting our next results, we denote the matrix

Ãd = diag{ãdi }, where ãdi =
n∑

j=1

max{|adij|2, |adij|2}, i ∈ [n].

Theorem 3.1. Let Assumption (A1) hold and assume that there exist positive scalars α,
γ, and a positive matrix M = diag{mi} ≻ 0 such that

Θ := 2MC − αm∗En − γM2Ãd − α−1m∗HF 2 − γ−1nF 2 ≻ 0, (3.1)

where En ∈ Rn×n is the identity matrix. Then, system (2.1) possesses a unique EP
x∗ ∈ Rn.
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Proof. We define a continuous mapping F : Rn → Rn as

F(u) = −Cu+ Af̃(u) + Adf̃(u) + I.

It is clear that x∗ ∈ Rn is an EP of system (2.1) if and only if it is a null point of the
mapping F , that is, F(x∗) = 0. We now show that, under the derived condition of
Theorem 3.1, the mapping F(u) is proper. Thanks to Lemma 2.3, it suffices to prove that
F(u) is a homeomorphism onto Rn. Indeed, for any u, v ∈ Rn, u ̸= v, we have

F(u)−F(v) = −C(u− v) + A
(
f̃(u)− f̃(v)

)
+ Ad

(
f̃(u)− f̃(v)

)
.

Therefore,

2(u− v)⊤M
[
F(u)−F(v)

]
= −2(u− v)⊤MC(u− v)

+ 2(u− v)⊤MA
(
f̃(u)− f̃(v)

)
+ 2(u− v)⊤MAd

(
f̃(u)− f̃(v).

≤ −2(u− v)⊤MC(u− v) + 2(u− v)⊤MA
(
f̃(u)− f̃(v)

)
+ 2(u− v)⊤MAd

(
f̃(u)− f̃(v). (3.2)

In addition, by Lemma 2.2, we have

2(u− v)⊤MA
(
f̃(u)− f̃(v)

)
≤ αm∗(u− v)⊤(u− v)

+ α−1m∗(f̃(u)− f̃(v))⊤H(f̃(u)− f̃(v)). (3.3)

Taking Assumption (A1) into account, we obtain

2(u− v)⊤MA
(
f̃(u)− f̃(v)

)
≤ αm∗(u− v)⊤(u− v)

+ α−1m∗(u− v)⊤HF 2(u− v). (3.4)
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and

2(u− v)⊤MAd
(
f̃(u)− f̃(v)

)
= 2

n∑
i=1

n∑
j=1

(ui − vi)mia
d
ij

(
f̃j(uj)− f̃j(vj)

)
≤

n∑
i=1

n∑
j=1

2|ui − vi|mi|adij||f̃j(uj)− f̃j(vj)|

≤
n∑

i=1

n∑
j=1

2|ui − vi|mi|adij|Fj|uj − vj|

≤ γ

n∑
i=1

n∑
j=1

|ui − vi|2|m2
i |adij|2 + γ−1

n∑
i=1

n∑
j=1

F 2
j |uj − vj|2

= γ

n∑
i=1

m2
i

( n∑
j=1

|adij|2
)
|ui − vi|2 + γ−1n

n∑
j=1

F 2
j |uj − vj|2

≤ γ
n∑

i=1

m2
i ã

d
i |ui − vi|2 + γ−1n

n∑
j=1

F 2
j |uj − vj|2.

Thus,

2(u−v)⊤MAd
(
f̃(u)−f̃(v)

)
≤ γ(u−v)⊤M2Ãd(u−v)+γ−1n(u−v)⊤F 2(u−v). (3.5)

Combining (3.3), (3.4), and (3.5), we readily obtain

2(u− v)⊤M [F(u)−F(v)] ≤ (u− v)⊤
[
−2MC + αm∗En + γM2Ãd

]
(u− v)

+ (u− v)⊤
[
α−1m∗HF 2 + γ−1nF 2

]
(u− v). (3.6)

Thus, by condition (3.1),

2(u− v)⊤M
[
F(u)−F(v)

]
≤ −(u− v)⊤Θ(u− v) < 0. (3.7)

The result of (3.7) induces that F(u) ̸= F(v) for all u ̸= v. Thus, F(.) is an injective
mapping in Rn. In addition, it also follows from (3.7) that

2(u− v)⊤M [F(u)−F(v)] ≤ −λm(Θ)∥u− v∥22 < 0. (3.8)

Let v = 0, we have

2u⊤M [F(u)−F(0)] ≤ −λm(Θ)∥u∥22 < 0

and, therefore,

∥F(u)−F(0)∥2 ≥
λm(Θ)∥u∥2

2m∗ .
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By using the property ∥F(u)−F(0)∥2 ≤ ∥F(u)∥2 + ∥F(0)∥2, we finally obtain

∥F(u)∥2 ≥
λm(Θ)

2m∗ ∥u∥2 − ∥F(0)∥2

which ensures that ∥F(pk)∥2 → ∞ for any sequence {pk} ⊂ Rn with ∥pk∥2 → ∞ as
k → ∞. Thus, F(.) is a homeomorphism onto Rn. Consequently, F(u) = 0 has a unique
solution x∗ ∈ Rn, which is a unique EP of (2.1). The proof is completed.

3.2. Robust stability

Based on the result of Theorem 3.1, in this section, we prove the property of
global asymptotic stability of the EP x∗ of system (2.1). For this, we define a state
transformation as

ui(t) = xi(e
t)− x∗

i , i ∈ [n].

Then, system (2.1) can be recast to the following system with constant delays and
variable coefficients

u̇i(t) = et

(
−ciui(t) +

n∑
j=1

aijfj(uj(t)) +
n∑

j=1

adijfj(uj(t− τij))

)
, t ≥ 0, (3.9)

where τij = − ln pij > 0 and fj(uj(t)) = f̃j(uj(t) + x∗
j)− f̃j(x

∗
j), j ∈ [n].

By (A1), the function fj satisfies fj(0) = 0 and

|fj(uj(t))| ≤ Fj|uj(t)|. (3.10)

In addition, it can be verified that the EP x∗ ∈ Rn of system (2.1) is shifted to the origin
of system (3.9). Therefore, the EP x∗ of (2.1) is GAS if the origin of system (3.9) is GAS.

Theorem 3.2. Under the assumptions of Theorem 3.1, that is, there exist positive scalars
α, γ and a positive matrix M = diag{mi} ≻ 0 satisfying condition (3.1), system (2.1)
possesses a unique EP x∗ ∈ Rn which is robust globally asymptotically stable.

Proof. Consider the following Lyapunov-like functional

V (u(t)) = e−t

n∑
i=1

miu
2
i (t) + γ−1

n∑
i=1

n∑
l=1

∫ t

t−τil

f 2
l (ul(ξ))dξ. (3.11)
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The derivative of V (u(t)) along state trajectories of system (3.9) is given as

V̇ (u(t)) = −e−t

n∑
i=1

miu
2
i (t) + 2e−t

n∑
i=1

ui(t)u̇i(t)

+ γ−1

n∑
i=1

n∑
l=1

(
f 2
l (ul(t))− f 2

l (ul(t− τil))
)

≤ 2e−t

n∑
i=1

ui(t)u̇i(t) + γ−1

n∑
i=1

n∑
l=1

(
f 2
l (ul(t))− f 2

l (ul(t− τil))
)

= 2
n∑

i=1

ui(t)
(
− ciui(t) +

n∑
j=1

aijfj(uj(t)) +
n∑

j=1

adijfj(uj(t− τij))
)

+ γ−1

n∑
i=1

n∑
l=1

(
f 2
l (ul(t))− f 2

l (ul(t− τil))
)

= −2
n∑

i=1

miciu
2
i (t) + 2

n∑
i=1

n∑
j=1

miui(t)aijfj(uj(t))

+ 2
n∑

i=1

n∑
j=1

miui(t)a
d
ijfj(uj(t− τij))

+ γ−1

n∑
i=1

n∑
l=1

(
f 2
l (ul(t))− f 2

l (ul(t− τil))
)

≤ −2
n∑

i=1

mi ci u
2
i (t) + 2

n∑
i=1

n∑
j=1

miui(t)aijfj(uj(t))

+ 2
n∑

i=1

n∑
j=1

miui(t)a
d
ijfj(uj(t− τij))

+ γ−1n

n∑
l=1

F 2
l |ul(t)|2 − γ−1

n∑
i=1

n∑
l=1

f 2
l (ul(t− τil))

)
.

By Lemma 2.2 and condition (3.10), we have

2
n∑

i=1

n∑
j=1

miui(t)aijfj(uj(t))) = 2u⊤(t)MAf(u(t))

≤ αm∗u⊤(t)u(t) + α−1m∗u⊤(t)HF 2u(t). (3.12)
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Next, we estimate the term 2
∑n

i=1

∑n
j=1miui(t)a

d
ijfj(uj(t− τij)) as follows

2
n∑

i=1

n∑
j=1

miui(t)a
d
ijfj(uj(t− τij)) ≤

n∑
i=1

n∑
j=1

2mi|ui(t)||adij||fj(uj(t− τij)|

≤ γ

n∑
i=1

n∑
j=1

m2
iu

2
i (t)|adij|2 + γ−1

n∑
i=1

n∑
j=1

f 2
j (uj(t− τij)

≤ γu⊤(t)M2Ãdu(t) + γ−1

n∑
i=1

n∑
j=1

f 2
j (uj(t− τij). (3.13)

Combining (3.12) and (3.13), the derivative of V (u(t)) can be manipulated as

V̇ (u(t))) ≤ −u⊤(t)
[
2MC −m∗αEn − γM2Ãd −m∗α−1HF 2 − γ−1nF 2

]
u(t)

≤ −u⊤(t)Θu(t)

≤ −λm(Θ)∥u(t)∥22,
(3.14)

where the matrix Θ is formulated in Theorem 3.1. According to condition (3.1), λm(Θ) >
0, we have

V̇ (u(t)) < 0, ∀u(t) ̸= 0.

By this negativeness condition, it can be concluded that the origin of system (3.9) is
globally asymptotically stable. The proof is completed.

Remark 3.1. As a special case, if the neuron connection weights of model (2.1) are known
(i.e. the matrices C, A and Ad are known), the result of Theorem 3.2 is reduced to the
following corollary.

Corollary 3.1. Let Assumption (A1) hold and assume that there exist positive scalars α,
γ, and a positive matrices M = diag{mi} ≻ 0 that satisfy the following condition

Θ̃ = 2MC − αm∗En − γM2Âd − α−1m∗H̃F 2 − γ−1nF 2 ≻ 0, (3.15)

where Âd = diag{âdi }, H̃ = diag{h̃j}, and âdi =
∑n

j=1 |adij|2, h̃j =∑n
i=1 (|aij|

∑n
l=1 |ail|). Then, system (2.1) has a unique EP x∗ ∈ Rn which is GAS.

Remark 3.2. The results of Theorems 3.1, 3.2 can be extended for the following uncertain
neural networks model

ẋi(t) = −cixi(t) +
n∑

j=1

aij f̃
(1)
j (xj(t)) +

n∑
j=1

adij f̃
(2)
j (xj(pijt)) + Ii, i ∈ [n], (3.16)

where the neural activation functions f̃
(1)
j and f̃

(2)
j , j ∈ [n], satisfy the following

conditions
|f̃ (1)

j (a)− f̃
(1)
j (b)| ≤ F

(1)
j |a− b|,

|f̃ (2)
j (a)− f̃

(2)
j (b)| ≤ F

(2)
j |a− b|

(3.17)
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for all a, b ∈ R, a ̸= b. Denote F1 = diag{F (1)
j } and F2 = diag{F (2)

j }. We have the
following result.

Theorem 3.3. Consider system (3.16) with uncertain parameters defined by (2.2).
Assume that condition (3.17) holds and there exist positive constants α, γ and positive
matrix M = diag{mi} ≻ 0 that satisfy the following condition

Θ1 = 2MC − αm∗En − γM2Ãd − α−1m∗HF 2
1 − γ−1n(F 2

1 + F 2
2 ) ≻ 0. (3.18)

Then, system (3.16) possesses a unique EP x∗ ∈ Rn, which is GAS.

Proof. The existence and uniqueness of an EP of system (3.16) can be demonstrated by
similar arguments used in the proof of Theorem 3.1. To prove the EP of system (3.16) is
globally asymptotically stable, we consider the following Lyapunov-like functional

V (u(t)) = e−t

n∑
i=1

miu
2
i (t)

+ γ−1

n∑
i=1

n∑
l=1

(∫ t

t−τil

(f
(1)
l )2(ul(ξ))dξ +

∫ t

t−τil

(f
(2)
l )2(ul(ξ))dξ

)
, (3.19)

where

f
(1)
l (ul(t)) = f̃

(1)
l (ul(t) + x∗

l )− f̃
(1)
l (x∗

l ),

f
(2)
l (ul(t− τil)) = f̃

(2)
l (ul(t− τil) + x∗

l )− f̃
(2)
l (x∗

l ), l ∈ [n], i ∈ [n].

By similar arguments used in the proof of Theorem 3.2, it can be shown under condition
(3.18) that the derivative of the functional (3.19) is negative definite. Thus, the EP x∗ of
system (3.18) is GAS. The proof is completed.

4. Numerical example
Consider system (2.1), where the neuron connection weights satisfy (2.2) with the

data

A = −14×4, A = 14×4,

Ad = −2.14×4, Ad = 2.14×4

and C = C = diag{c1, c2, c3, c4}, where 1m×n denotes the (m,n)-matrix with all
elements equal one. The activation functions are given by

f̃1(x1) = tanh(L1x1), f̃2(x2) = tanh(L2x2),

f̃3(x3) = sin(L3x3), f̃4(x4) = sin(L4x4),
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where L1 = L2 = 1
4

and L3 = L4 = 1
2
. It is clear that the functions f̃j are continuous,

differentiable on R and satisfy |f̃ ′
j(xj)| ≤ Lj , j = 1, 2, 3, 4. Thus, by mean valued

theorem, we can easily see that Assumption (A1) holds with F = diag{1
4
, 1
4
, 1
2
, 1
2
}. In

addtion, by a simple calculation, we have Ãd = H = 16E4. We choose α = 1, γ = 1
16

and M = diag{1, 2, 2, 2}, then

Θ = diag{2c1 − 9, 4c2 − 12, 4c3 − 30, 4c4 − 30}.

It is clear that Θ ≻ 0 if and only if c1 > 4.5, c2 > 3, c3 > 7.5 and c4 > 7.5. By Theorems
3.1 and 3.2, system (2.1) has a unique EP that is globally asymptotically stable.

5. Conclusions
The problem of robust stability of uncertain Hopfield neural networks with

proportional delays has been investigated in this paper. The existence and uniqueness
of an equilibrium have been established using the homeomorphic mapping theorem. By
utilizing appropriate Lyapunov-like functionals, new criteria have been established to
determine the global asymptotic stability of the unique equilibrium point. Finally, a
numerical example has been provided to demonstrate the effectiveness of the obtained
results.
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