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Abstract. In this paper, we will prove a uniqueness theorem for meromorphic
functions with finite growth indices on a complex disc sharing some small
functions with different multiplicity values. Intersecting points between these
mappings and small functions with multiplicities more than a certain number do
not need to be counted. Our result extends some previous results on this topic.
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1. Introduction

From the theorems about the four and five values of Nevanlinna R [1], many
authors have improved and generalized these theorems to prove the finiteness problem
of meromorphic mappings on C™, a Kihler manifold, a semi-Abelian variety or an
annuli, etc. We can see these results in [2]-[6]. In 2020, Ru M and Sibony N [7]
formulated a new second main theorem for meromorphic functions on a complex disc
with fixed values, and then in 2022, Si DQ [8] generalized that result by using small
functions instead of fixed values. In this paper, he also proved an uniqueness theorem for
non-constant meromorphic functions on a disc with finite growth indices sharing small
functions as follows:

Theorem A Let f,g be two non-constant meromorphic functions on the disc
A(R) (0 < R < +00) with finite growth indices cs,c,. Let {(a;)}_; (¢ > 5) be q
distinct small functions (with respect to f and g) and k be a positive integers or +oc.
Assume that

min{1,v7_, .} =min{l,0)_, .} (1 <i<q).

k(2 —8) —3(q+4)
k(19¢ — 11) +19(q + 4)

Ifcy +cy < then f = g.
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On uniqueness of meromorphic functions with finite growth index sharing some small functions

However, S. D. Quang only considered the case where the mappings f and g share
q (¢ > 5) small functions in A(R) which have the same multiplicities. The purpose
of this paper is to improve the result of Theorem A by giving a unique theorem with
differentmultiplicity values. Specifically, we will prove the following theorem.

Theorem 1.1. Let f, g be two non-constant meromorphic functions on the disc A(R) (0 <
R < +400) with finite growth indices cg,c,. Let {(a;)}{_, (¢ > 5) be q distinct small
functions (with respect to f and g) and ki, ..., k, be a positive integers or 0o such that

qko(2q —8) +2q(q+4) —5(g+4) Y, +
qko(19¢ — 57) + 19q(q + 4) '

Cf+Cg<

where ky = maxi<;<, k;. Assume that
min{1, I/?faiéki} = min{1, ngbi,gki} (1<i<gq).
Then f = g.

Remark. When ky = ky = --- = k; = k, from Theorem 1.1, we obtain the result
of the Theorem A.

2. Some results from Nevanlinna theory on the complex disc

Now, we set a disc in C by
AR)={2z€C:|z|] <R} (0 < R < +400).

For a divisor v on A(R), which can be regarded as a function on A(R) with value
in Z whose support is a discrete subset of A(R), and for a positive integer M (maybe
M = 00), we define the truncated counting function to level M of v by

ntM(t,v) = Z min{M,v(z)} (0 <t < R),

2w |<t

o [M] _[M]
aMNMmm:/” @”t”(awﬁ

0

For brevity we will omit the character M if M = +oc.
For a divisor v and a positive integer k (maybe k = +00), we define

v(z) ifv(z) <k v(z) ifv(z) >k
Vep(2) = and v~ (2) =
<k(2) {0 otherwise >#(2) 0 otherwise.

For a meromorphic function ¢, we define
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° 0 o0 . . . .
v, (resp. v°) the divisor of zeros (resp. divisor of poles) of ¢,

. o o : : :
Similarly, we define v3° ., V2°<y, Vip <k, Vi, <k and their counting functions.

Let f be a nonconstant meromorphic function on A(R). We define the proximity
function and the characteristic function of f as follows:

21

mir )= 5 [ 10" 7(re]ab,
0

and
T(Ta f) = m(r, f) + N(ﬁ V?O)

A meromorphic function a is said to be small with respect to f if T(r,a) =
o(T(r, f))asr — R.

According to M. Ru and N. Sibony [7], the growth index of f is defined by

R
¢y =1inf{c>0: / TN dr = oo},
0
For convenient, we will set ¢; = o0 if {¢ > 0: fOR eI Ndr = +oo} = 0.

For given two meromorphic mappings f and g on A(R) (here, we may use a
conformal transformation from a plane to a disc), the map f is said to be a quasi-Mdbius

transformation of ¢ if there exist small (with respect to ¢) functions «; (1 < i < 4) such

that f = 219192 [f a]] functions o, (1 < i < 4) are constants then we say that the map f
azg+aq

is a Mobius transformation of g.

Throughout this paper, by notation “||z P, we mean that the asseartion P hold for
all 7 € (0, R) outside a subset F of (0, R) with [, y(r)dr < 4oc.

Lemma 2.1 (Lemma on logarithmic derivatives [7]). Let 0 < R < +oc and let ~(r) be

a non-negative measurable function defined on (0, R) with fOR’y(r)dr = +4o0. Let f be a
nonzero meromorphic function on A(R). Then for ¢ > 0, we have

’

I (. f7> = (14 ) logy(r) + logr + O(log T(r, f)).

Then, for any small function a (with respect to f) we also have

/

|l m(r, %) = (1+¢)logy(r) +elogr + o(T(r, f)).
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On uniqueness of meromorphic functions with finite growth index sharing some small functions

This implies that

I ’

I NG #) < T(r, ) = N )+ mlr, )
< NW(r, 00y + NU(r 02) 4+ (1 4 ) log y(r) 4 elogr + o(T(r, f)).

Remark.

 If f is of finite growth index (i.e., ¢; < +o00) then the Lemma 2.1, we may take
’}/(7’) = e(cf"'a)T("':f).

e If R = +00, we may take cy = 0.

Theorem 2.1 (First main theorem [7]). Let f be a meromorphic function on A(R). Then
for each a € C, we have

1
f—a

T(r,f) =T(r, ) +o(T(r, f))-

The following theorem is due to S. D. Quang [8].

Theorem 2.2 ( see [8, Theorem 1.1]). Let f be a non-constant meromorphic function on
A(R) and ay, ..., as be five distinct small functions (with respect to f). Assume that v(r)

be a non-negative measurable function defined on (0, R) with fOR y(r)dr = +oco. Then,
Jfor any € > 0, it holds that

5
e 2T(r, f) < 3 NW(r ), ) +19((1 + ) logy(r) + elog 7)) + o(T(r, f).
i=1
From Theorem 2.2, we easily get the following result.

Theorem 2.3 (Second main theorem). Let f be a non-constant meromorphic function on
A(R) and ay, ..., a, be distinct small functions (with respect to f). Assume that v(r) is

a non-negative measurable function defined on (0, R) with foRfy(r)dr = +o0. Then, for
any € > (),

HE Z (, uf o) T19((1 4 ¢)logvy(r) +elogr)) + o(T(r, f).

3. Proof of Theorems 1.1

In order to prove Theorem 1.1, we need the following auxiliary result.
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Lemma 3.1. Let f be a nonconstant meromorphic function on a disc A(R) and a be a
small function (with respect to f). Then, for any ¢ > 0 and positive integer k (maybe
k = 400), we have

ENU(r,v]_oo0) < N(rvi,) = NU(rvg_).
Proof. We have

NI (7”, V})—a) = N[1]<T7 qu—a,gk) + NU (7‘, V})—a,>k)
1

S N[l] (T’ U?_a7§k) —+ k——HN(T, Vjoc—a,>k)
ko om0 Lo 1 0
< k—+1N (7 Vi_a<k) + k—+1N (r, Vf a<k) T k—HN(T’ Vi_g5k)
k
S k—HN[l} (7"7 V](g_mgk) -+ k—HN<T, V?_a).
This implie that
(k + 1)N[1](7a7 y](g_a) S kN[l] (T’, V][‘)—a,gk) + N(Ta V?—a)'
Thus
kN[1]<T7 V?—a,>k) < N(T’, V;”)—a) - N[H (T’, I/][g—a)‘
The lemma is proved. [

Lemma 3.2. Let f and g be two distinct meromorphic functions on A(R) with finite
growth indices cy and c,, respectively, and ay, ..., a,(q > 5) be distinct small functions
with respect to f and g. Suppose that

min{1, qu—ai,gki} = min{1, ’/g—bi,éki} (1<i<g).

Let € be a positive real number.  Setting T(r) = T(r,f) + T(r,g),y(r) =
eletmax{esca)T(r) gnd S(r) = (1 + ¢)logy(r) + € log r, then we have

q
||E Z N[1]<7’, V;‘Jfaizgfaqbv) S Nm (Tv V;)fai7>k) + N[l](ry Vg(])fai,>k) + 75(7’) + O(T(T))

1=5

Here, NI'(r, V?_a:g_a) denotes the counting function without multiplicity which

counts all common zeros of f — a and g — a, and NI'(r, Vf_q k) denotes the counting
function without multiplicity which counts zero of f — a with multiplicity at least k& + 1.
Proof. 1f 331 - NW(r, N9_, _ ) = o(T(r)) then (3..1) obviously holds. Now, we
suppose Y7 e, VW aimga) 7 O(T(1). We set V = Uy;je,sup(vl, ). Then
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V is a discrete subset of A(R) and N(r,V) = o(T'(r)), where N(r,V) is the counting
function without multiplicity which counts all points in V. By using the quasi-Mdbius
transformation
Liw) (w—a1)(as — az)

(w—ag)(as — ay)
and considering two functions L(f), L(g) if necessary, we may assume that a; = 0, as =
00,a3 = 1 and a4y = a with a ¢ {0, oo, 1} (this quasi-Mdbius transformation only make
the counting functions in the inequality of the lemma change up to small terms o(7'(r)).
We denote by V,, (u € {0,00,1,a}) the set of points which are either zero of f — u or
zero of g — u, where f — oo is regarded as %

Now we set
_ flag—ag)(f —9) _g(df—af)(f-9g)
H = f(f —Dg(g—a) g —Df(f —a) (3.2)

Then

(f—9)Q

T=5" D0 —a9ls Dy —a)’

(3..3)

where
Q=f(dg—ag)(f —a)g—1)—g'(d'f —af)lg—a)f—1)
=dff'g—dffg—ala—1)ff'g —adf'g’ +adf'g (3.4)
—d fP9q +d fgg' +ala—1)f'gg +ad f*g —ad fg'.
Case 1: Suppose that H = 0. Then from (3..2), we have
f'dg—ag) _ g'(df—af)

(f=Dlg—a)  (g-D(f —a)

This implie that

(f=9)l-a) (f-Vlg—a) ,_[fldg—ag)
(9=D(f—a) (g=1)(f—a) g(@f—af)
_dl(f"=9)9 - (f—9)d]
g@f—af’) ’
This yields that

=g (A—a)gdf—af) L9
f-g dglg-1(f-a) g
Hence, if there exists a point 2y ¢ V which is a common zero of f — a; and g — a; (5 <

i < q) then it must be a pole of the left hand side of (3..5) but not be pole of the right hand
side. This is a contradiction. Thus,

(3..5)

Z N[l] (7’, N})—aizg—ai) < (q - 4)N[1] (7’, V) - O(T<T))

1=5
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Case 2: Suppose that H # 0. From (3..2) and (3..4), we easily see that if z ¢ V is
a common zero of f —a; and g — a; (5 < i < ¢) then it is a zero of f — g and is not a
pole of 0= ? ———. Hence it is a zero of H. Therefore,
a)g(g—1)(g—a)

q
Z N[l] (T’ V?—aiig—ai)
1=5

IN

NU(r, 1) + N(r, V) + o(T(r))

(3..6)
T(r,H)+ o(T(r))

m(r, H) + N(r,v5) + o(T(r)).

IA A

We now estimate the proximity function m(r, H). First, we have
' d'g—ag I f'a'g—ag
H = — — L
f=1g(g—a) (f—l f)g—a
B g/ a/f'_af/—( g/ _g_/ a/f_af/
g=1f(f—a) "g—1 g° f-a
B f/ g_/_g/_a/ B f/ f/ ) g/_a/
_f—l% g—a>(f—1 fx g—a>
A S R PR Y
e R )

By the lemma on logarithmic derivatives, we get
7)o () () e (55)
m(r,H) <m|(r,~=|+m|r,= | 4+m|r,— | 4+m|r,——
) ( f 9 f=1 g—1

7S(r) 4+ o(T(r)). (3..8)

(3..7)

We now estimate the counting function N(r,v%). From (3..7), we know that the
poles of H only possibly occur from the zeros of f — a;, 9 — a;, (i € {1,2,3,4}). We
consider the following four subcases.

Subcase 1: z is a pole of a’ or a. Hence z must be a pole of a. We note that each
/

pole of every meromorphic function of the form M has multiplicity at most 1. Therefore,
N(r,vy) < N(rvl)+2 <3N(r,v;°) = o(T(r)).

Subcase 2: z is not a pole of a and z is a common zero of (f — u) and (g — ) for
a function u € {0, 00, 1, a}. From (3..4), we rewrite H as follows:

f/ f/ g/ g/_a/ g/ g/ f/ f/_a/
M=o PG =) GG =)
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On uniqueness of meromorphic functions with finite growth index sharing some small functions

where f/ g/ f/ g’—a’ f/ g/_a/ g/ f/ g/ f’—a’ f’—a’ g/
= A . — 4 — Z .
f-1lg f-1lg-a fg-a g=-1f g-1f—-—a f-ay
Hence, z is a zero of f — g and a simple pole of P. Therefore z is not a pole of H.

Subcase 3: z is not a pole of a and is a common pole of f and g. From (3..3) and
(3..4), we easily see that z 1s not a pole of H.

Subcase 4: z is not a pole of a and z is either a zero of f — a; or a zero of g — «a;
for some i € {1,...,4}. From (3..7), H has the following form

=g —

H = E Aoy f u v ’

u,v€{0,00,1,a} 9
uFv

where a,,, are constants or +a’ or +a. Hence

N(r,vg) < max  (N(r,vy )+ N(rvy,))

u’v€{0700’17a} f—u g—v
uFv

4
é Z (N[l} (r7 V?—ai) + N[l} (r7 I/g[])—al) - N[l] (7', V?—ai:g—ai)) :
From the above four case, we have

N(rvi) <y (NU(rwp_,) + NU(r v, ) = NU(rvp_, ) +o(T(r))

M-

=1

(N[l](r7 V‘?—ai,>k‘i) + N[l](r7 Vg—ai,>ki)) _I_ O(T(T))

M-

=1

Combining the above inequality and (3..6), (3..8), we get

q 4
DN ) <D (N o) + N vy, 10)) +75(r) +o(T(r)).
i=5 i=1
The lemma is proved in this case. []

Proof of Theorem 1.1.
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Proof. By Lemma 3.2 for every subset {i1, ..., 74 }, we have

q 4
S (N9 )+ NIl ) =Y (N[l} (r, V](La,.j) + NW(r, ngaij)>
i=1 7=t
q
= 3 (W) N )
7=5
q
< < oN(r, Vf A )+ N —aij7>kij) + N, uf;_aij,>kij))
J=5

IA
N

(N, )+ N o))

1

J
q

+

(N[l](r, V?—a ) + NI }( r, g ai, ks, )) + 7T (r) + o(T(r))

<.
Il

B

< (Nm(r Vf a; >k)+N[1}( T, g ai, >k ))

1

<.
Il

E

£ (N gy o)+ N, o))+ TT0) 4 o(T(0).

1

.
Il

By summing-up both sides of the above inequality over all 1 < 43 < iy < 13 < iy < ¢
and utilizing Lemma 3.1, we obtain

q

i=1
q
i=1
q

1
< (q + 4) Z ]{?_ (N<T7 V})fai) - N[1]<T7 V;‘)fai) + N(n V;)fa) - Nm(rv ngai))

+7¢S(r) i;(TZ(r))
Thus
(q—4+ q,::) )Xq: (N0 )+ N0 ) < Zq: q;4 (N0, + N(r,v2,)
- + 7Zq_g( )+ o(T(r))
< iq;4aw3>+Tvg»
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From this and Theorem 2.3, we get

qg+4

(0—4+ 70 >§<2T<r>—385<r>>s;q

—]:i 4T(r) + 7¢S(r) + o(T'(r)).

This yields that

qko(2q — 8) +2q¢(q +4) — 5(¢ +4) XL, &
I qko(38¢ — 117) + 38¢(q + 4) T(r) < S(r) +o(T(r):

Let ¢ — 0 and then r — R (r € E), we obtain

qko(29 —8) +2q(¢+4) —5(¢ +4) YL, +

cf + ¢q > 2min{cy, g} > gko(19g — I7) + 19g(g + 4)
2

This is a contradiction. The theorem is proved. ]
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