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Abstract. In this study, we define a balancing B-matrix which is similar to the
Fibonacci ()-matrix and the Lucas Q) -matrix. Using this matrix representation,
we obtain some well-known equalities and a Binet-like formula for balancing
numbers. Moreover, some arithmetic properties of balancing numbers are
established.
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1. Introduction

Fibonacci and Lucas numbers with their generalizations have many interesting
properties and applications to various fields of science and art. For the prettiness and
richness applications of these numbers and their relatives to science and nature one can
see [1], [2]. Consider the following 2 X 2 matrix

11
o= (1 o).

called the ()-matrix, which was first studied by King [3] (see also [2, pp. 362]). Then for
a positive integer n, Q" has the form

n __ Fn+1 Fn
Q B ( Fn Fn—l) ’
where F;, is the nth Fibonacci number. We have
(_1)n = det(Q") = anlFTH»l — Fs,

so we obtain Cassini’s formula for the Fibonacci numbers.
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In 2010, Koken and Bozkurt [4] considered the Lucas () -matrix defined by

3 1
QLz(l 2)

then, for a positive integer n, we have

Ln+1 _ Fn Fn+1 _ Ln
( Ln ) N QL (Fnl) and 5 ( Fn N QL Lnfl ’
where L, is the nth Lucas number. They use this matrix representation to find some

well-known equalities and a Binet-like formula for the Fibonacci and Lucas numbers.

Consider the Pell numbers P, and Pell-Lucas numbers (), (also known as the
Companion Pell) which are defined by the recurrence relations

Py=0, P =1 P, =2P,_1+P, 2, n2=>2,
QO = 17 Ql = 17 Qn = 2@1171 + Qn727 n>2.
It is important to note that Pell and Pell-Lucas numbers serve as a bridge linking
number theory, combinatorics, graph theory, geometry, trigonometry, and analysis. These

numbers occur, for example, in the study of lattice walks, and the tilings of linear and
circular boards using unit square tiles and dominoes [5].

Similar to the case of Fibonacci and Lucas numbers, Koshy [5] also use matrices
to generate Pell numbers and Pell-Lucas numbers by defining the matrix P and @)

respectively as
2 1 31
P_<1 O> andQ-(1 0)

n __ Pn+1 Pn
Pt = ( Pn Pn—l) ’
where P, is the n-th Pell number and

P, P, .
on/2 < i ) if n is even,

then,

Q Pn Pnfl
9ln/2] (QCSH QQ” > otherwise,
n n—1

where (), is the n-th Pell number.
In this paper, we also use matrix representation for the balancing sequence { B, }2°
which is defined by the recursion
By = 0, By = L, B, =6B,_1 — Bn727 n=2

to find some well-known equalities, a Binet-like formula and some arithmetic properties
of balancing numbers. Note that balancing numbers are quite well-known and closely
connected with triangular numbers, Pells numbers and Fibonacci numbers [6], [7].
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2. Matrix representation of balancing numbers

6 1
o)

o (35 6\ ([ By B 3 [ Bs Bs
B (—6 1)=\-B, -B and B = "B, —-B,)°

More generally, we have the following result.

Consider the matrix

we have

Theorem 2.1. Let n be a positive integer. Then

n __ Bn+1 Bn
B" = <_Bn _Bn—l> ’
where B,, is the nth balancing number.

Proof. We will prove it by induction. The result is clearly true when n = 1. Now assume
that it is true for an arbitrary integer £ > 2

Bry1 By
B* = - :
<_Bk _Bk—l)

Then, using the balancing recurrence, we have
B*' =B".B
(B By, 6 1
-\ =B, —DBi_ -1 0

_( 6541 = Br  Brn
—6B, + B,_1 —B;

_( Br+2 Bin
—Byy1 =By )

So the result is true when n = k£ + 1. Thus, by induction, the assertion is true for every
integer n > 1. []

An immediate consequence of Theorem 2.1 is the Cassini-like formula for B,,.
Corollary 2.1. Let n be a positive integer. Then,

BnJran,l - B?l = —1
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Proof. Denote by det(M) the determinant of matrix M. Then,

Bn+1 Bn

(det(B))" = det(B") = det <—Bn ~Bu

> = _Bn+1Bn—1 + B72L

But det(B) = 1 so det(B") = 1. Thus, B, 1B, 1 — B> = —1 as desired. O

Theorem 2.2. Let n be a positive integer. Then, a Binet-like formula for the balancing
number is

A — A%
Bn: ! 27
42

where \y = 3+ 2v2, Xy = 3 — 2v/2 are two roots of the characteristic equation of the
balancing recurrence \*> — 6\ + 1 = 0.

Proof. We can write the characteristic equation of the matrix B as det(B — A\I) = 0 i.e
N —6A+1=0.
If we calculate the eigenvalues and eigenvectors of the matrix 3, we obtain
M =3+2V2 A=3-2/2
and the matrix
V2 -3v2+4
U= (_3 _12ﬁ -3 Jrlzﬁ) ad U= | B8
8

8
then,
B A0 _1
B=U ( 0 )\2> U.
Therefore,
A0 IO VAR Vs A — AL
B" — 1 -1 _ 1 2 1 2 .
v ( 0 Ag) N ( AP AR AT A;”)
By Theorem 2.1 and by equating the lower left-hand elements from both sides, we obtain
AP \D
B, = 4 72
42

Theorem 2.3. Let m,n be the positive integers m,n. Then,

Bner = BnJrle — B, By, -1
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Proof. Since B™™" = B™B™, by Theorem 2.1, we have

Bm+n+1 Bm+n _ Bm+1 Bm Bn+1 Bn
_Bm—i-n _Bm+n—1 _Bm _Bm—l _Bn _Bn—l
_ Bm+1Bn+1 - BmBn Bm—l—an - BmBn—l
N _BmBn+1 + Bm—an _BmPn + Bm—an—l .

The formula follows by equating the lower left-hand elements from both sides. O]
Corollary 2.2. For all positive integers n, the following equalities are valid.
(i) By, = B,y1B, — B,B,_1.

(i) By, 1 = B2 — B2 ,.

(iti) B2 =By + B3+ -+ + Ba,_1.
Proof. (i) Let m = n in Theorem 2.3, we have

By, = Byy1B, — BB, 1.

(i1)) We have

BQn—l = Bn—1+n = Bn . Bn — Bn—l . Bn—l (by Theorem 23)
= BT2L - Bgfl'

(i11) Since the formula in (ii), we have

By +Bs+-+ By, =B -B+B} - B’+.--+B>—- B> | = B.

Il
Since det(B) = 1, the matrix B is invertible, so is B™. Thus, the inverse B~™ is
given by
B—m — 1 _Bmfl _Bm — _Bmfl _Bm
det(Bm) Bm Bm+1 Bm Bm+1
Thus,
n—m __ pn —-m Bn+1 Bn _Bm—l _Bm
b =5 B B (_Bn _Bn—l) ( Bm Bm+1>
So,

Bn—m+1 Bn—m o _Bn+1Bm—1 + Ban _Bn+1Bm + Ban—H
_anm _anmfl n Ban,1 - anle Ban - anle+1
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This implies that
Bnm = Ban+1 - Bn+1Bm (2.1)

for all positive integers n > m.

Note that if we extend the balancing number B5,, to integer indices by setting
B_,, = —B,,, then the formula (2.1) can be obtained from Theorem 2.3 by changing
m for —m.

Now, we find some interesting arithmetic properties of balancing numbers.
Lemma 2.1. Let m be a positive integer. Then gcd(By,, By—1) = 1.
Proof. We have
ged(By, Bir—1) = ged(6By—1 — Bi—2, Bir—1) = ged(By—1, Br—2),

for all £ > 2. Thus, gcd (B, Bi—1) = ged(By, By) = 1, as desired.

Theorem 2.4. Let m,n be positive integers. Then,
() By | Bin.
(ii) if B, | Bp thenn | m.

Proof. (1) We prove this statement by induction on m. Since the statement is true for
m = 1, assume it is true for an arbitrary integer m > 1, then by Theorem 2.3, we have

Bn(erl) = Bn+nm
- Bn+anm - Banm—l-

Since B,, | Bnm, by the inductive hypothesis, it follows that B,, | By (,+1). Thus, by
induction, B,, | B,,, for all integers m > 1.

(i1) By the division algorithm, let m = nk—+r, where 0 < r < n. Then, by Theorem
2.3, we have

B, = BnkJrr
= BnkBr—l—l — Bur-1B,.

Since B,, | B,, and B,, | Byx, we have B,, | Bx_1B,.

Moreover, by Lemma 2.1 we have ged(Bpg, Bnr—1) = 1. It follows that
ged(B,,, Bug—1) = 1. Therefore, B,, | B,. But this is impossible, unless » = 0. So,
m = nk and hence n | m, as desired. O

From Theorem 2.4, we obtain the following result.
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Corollary 2.3. B, | B,, ifand only if n. | m.

Now, we have the following general result.
Theorem 2.5. Let m,n be positive integers. Then,

ged (B, Bim) = Becd(n,m)-

To prove this theorem, we need the two following lemmas.
Lemma 2.2. Let m, q be positive integers. Then gcd(Bym—1, Bn) = 1.
Proof. This result follows directly from the proof of Theorem 2.4 (i1). [
Lemma 2.3. Let n = mq+ r,0 < r < m. Then gced(B,,, B,,) = ged(By,, By).
Proof. According to Theorem 2.1 and Lemma 2.2, we have

ged(By,, By,) = gcd Bingirs Bm)

(

(quB’l‘-‘rl B qu—la Bm)
= gcd(B Bym-1, Bm)

(

(

]

Proof of Theorem 2.5. Without loss of generality, we can assume that n > m. Then, by
the euclidean algorithm, we get the following sequence of equations

n = qym+rq, 0<ri<m

m = q171 + 72, 0<ry<nrm

1 = @ora + 73, 0<rs<ry
Th—2 = Qk—1Tk—1 + Tk, 0<rp<ri—1

Th—1 = Qg7 + 0.
It follows from a repeated application of Lemma 2.3 that

ged(B,,, By,) = ged(By,, By,) = ged(By,, Br,) =
= ng(BTk By ) = (qumw BTk)‘

By Theorem 2.4, B,, | By, then gcd(Byr., Br,) = By,. But r, = ged(n,m), so
ged(By, Bin) = Bgcd(n,m)» as desired. O

9



This theorem gives a quick and efficient algorithm for computing the greatest
common divisor of any two balancing numbers.

Corollary 2.4. gcd(B,,, B,,) = 1 if and only if gcd(m,n) = 1.
Proof. By Theorem 2.5 and B; = 1, we have the desired proof. ]

Remark 2.1. It follows from Theorem 2.5 that the least common multiple (Ilcm) of B,,
and B,, can also be computed quickly

B, B B, B
lem(B,,, B,,) = kL E——— bl
( ) gcd(Bn, Bm)  Bged(nm)
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