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Abstract. In this study, we define a balancing B-matrix which is similar to the
Fibonacci Q-matrix and the Lucas QL-matrix. Using this matrix representation,
we obtain some well-known equalities and a Binet-like formula for balancing
numbers. Moreover, some arithmetic properties of balancing numbers are
established.
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1. Introduction
Fibonacci and Lucas numbers with their generalizations have many interesting

properties and applications to various fields of science and art. For the prettiness and
richness applications of these numbers and their relatives to science and nature one can
see [1], [2]. Consider the following 2× 2 matrix

Q =

(
1 1
1 0

)
,

called the Q-matrix, which was first studied by King [3] (see also [2, pp. 362]). Then for
a positive integer n, Qn has the form

Qn =

(
Fn+1 Fn

Fn Fn−1

)
,

where Fn is the nth Fibonacci number. We have

(−1)n = det(Qn) = Fn−1Fn+1 − F 2
n ,

so we obtain Cassini’s formula for the Fibonacci numbers.
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In 2010, Köken and Bozkurt [4] considered the Lucas QL-matrix defined by

QL =

(
3 1
1 2

)
then, for a positive integer n, we have(

Ln+1

Ln

)
= QL

(
Fn

Fn−1

)
and 5

(
Fn+1

Fn

)
= QL

(
Ln

Ln−1

)
,

where Ln is the nth Lucas number. They use this matrix representation to find some
well-known equalities and a Binet-like formula for the Fibonacci and Lucas numbers.

Consider the Pell numbers Pn and Pell-Lucas numbers Qn (also known as the
Companion Pell) which are defined by the recurrence relations

P0 = 0, P1 = 1, Pn = 2Pn−1 + Pn−2, n ≥ 2,

Q0 = 1, Q1 = 1, Qn = 2Qn−1 +Qn−2, n ≥ 2.

It is important to note that Pell and Pell–Lucas numbers serve as a bridge linking
number theory, combinatorics, graph theory, geometry, trigonometry, and analysis. These
numbers occur, for example, in the study of lattice walks, and the tilings of linear and
circular boards using unit square tiles and dominoes [5].

Similar to the case of Fibonacci and Lucas numbers, Koshy [5] also use matrices
to generate Pell numbers and Pell-Lucas numbers by defining the matrix P and Q
respectively as

P =

(
2 1
1 0

)
and Q =

(
3 1
1 0

)
then,

P n =

(
Pn+1 Pn

Pn Pn−1

)
,

where Pn is the n-th Pell number and

Qn =


2n/2

(
Pn+1 Pn

Pn Pn−1

)
if n is even,

2⌊n/2⌋

(
Qn+1 Qn

Qn Qn−1

)
otherwise,

where Qn is the n-th Pell number.
In this paper, we also use matrix representation for the balancing sequence {Bn}∞n=0

which is defined by the recursion

B0 = 0, B1 = 1, Bn = 6Bn−1 −Bn−2, n ≥ 2

to find some well-known equalities, a Binet-like formula and some arithmetic properties
of balancing numbers. Note that balancing numbers are quite well-known and closely
connected with triangular numbers, Pells numbers and Fibonacci numbers [6], [7].
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2. Matrix representation of balancing numbers
Consider the matrix

B =

(
6 1
−1 0

)
,

we have

B2 =

(
35 6
−6 −1

)
=

(
B3 B2

−B2 −B1

)
and B3 =

(
B4 B3

−B3 −B2

)
.

More generally, we have the following result.

Theorem 2.1. Let n be a positive integer. Then

Bn =

(
Bn+1 Bn

−Bn −Bn−1

)
,

where Bn is the nth balancing number.

Proof. We will prove it by induction. The result is clearly true when n = 1. Now assume
that it is true for an arbitrary integer k ≥ 2

Bk =

(
Bk+1 Bk

−Bk −Bk−1

)
.

Then, using the balancing recurrence, we have

Bk+1 = Bk ·B

=

(
Bk+1 Bk

−Bk −Bk−1

)(
6 1
−1 0

)
=

(
6Pk+1 −Bk Bk+1

−6Bk +Bk−1 −Bk

)
=

(
Bk+2 Bk+1

−Bk+1 −Bk

)
.

So the result is true when n = k + 1. Thus, by induction, the assertion is true for every
integer n ≥ 1.

An immediate consequence of Theorem 2.1 is the Cassini-like formula for Bn.

Corollary 2.1. Let n be a positive integer. Then,

Bn+1Bn−1 −B2
n = −1.
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Proof. Denote by det(M) the determinant of matrix M . Then,

(det(B))n = det(Bn) = det

(
Bn+1 Bn

−Bn −Bn−1

)
= −Bn+1Bn−1 +B2

n.

But det(B) = 1 so det(Bn) = 1. Thus, Bn+1Bn−1 −B2
n = −1 as desired.

Theorem 2.2. Let n be a positive integer. Then, a Binet-like formula for the balancing
number is

Bn =
λn
1 − λn

2

4
√
2

,

where λ1 = 3+ 2
√
2, λ2 = 3− 2

√
2 are two roots of the characteristic equation of the

balancing recurrence λ2 − 6λ+ 1 = 0.

Proof. We can write the characteristic equation of the matrix B as det(B − λI) = 0 i.e

λ2 − 6λ+ 1 = 0.

If we calculate the eigenvalues and eigenvectors of the matrix B, we obtain

λ1 = 3 + 2
√
2, λ2 = 3− 2

√
2

and the matrix

U =

(
−3− 2

√
2 −3 + 2

√
2

1 1

)
and U−1 =

−
√
2

8

−3
√
2 + 4

8√
2

8

3
√
2 + 4

8


then,

B = U

(
λ1 0
0 λ2

)
U−1.

Therefore,

Bn = U

(
λn
1 0
0 λn

2

)
U−1 =

1

4
√
2

(
λn+1
1 − λn+1

2 λn
1 − λn

2

−λn
1 + λn

2 −λn−1
1 + λn−1

2

)
.

By Theorem 2.1 and by equating the lower left-hand elements from both sides, we obtain

Bn =
λn
1 − λn

2

4
√
2

.

Theorem 2.3. Let m,n be the positive integers m,n. Then,

Bn+m = Bn+1Bm −BnBm−1.
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Proof. Since Bm+n = BmBn, by Theorem 2.1, we have(
Bm+n+1 Bm+n

−Bm+n −Bm+n−1

)
=

(
Bm+1 Bm

−Bm −Bm−1

)(
Bn+1 Bn

−Bn −Bn−1

)
=

(
Bm+1Bn+1 −BmBn Bm+1Bn −BmBn−1

−BmBn+1 +Bm−1Bn −BmPn +Bm−1Bn−1

)
.

The formula follows by equating the lower left-hand elements from both sides.

Corollary 2.2. For all positive integers n, the following equalities are valid.

(i) B2n = Bn+1Bn −BnBn−1.

(ii) B2n−1 = B2
n −B2

n−1.

(iii) B2
n = B1 +B3 + · · ·+B2n−1.

Proof. (i) Let m = n in Theorem 2.3, we have

B2n = Bn+1Bn −BnBn−1.

(ii) We have

B2n−1 = Bn−1+n = Bn ·Bn −Bn−1 ·Bn−1 (by Theorem 2.3)
= B2

n −B2
n−1.

(iii) Since the formula in (ii), we have

B1 +B3 + · · ·+B2n−1 = B2
1 −B2

0 +B2
2 −B2

1 + · · ·+B2
n −B2

n−1 = B2
n.

Since det(B) = 1, the matrix B is invertible, so is Bm. Thus, the inverse B−m is
given by

B−m =
1

det(Bm)

(
−Bm−1 −Bm

Bm Bm+1

)
=

(
−Bm−1 −Bm

Bm Bm+1

)
Thus,

Bn−m = Bn ·B−m =

(
Bn+1 Bn

−Bn −Bn−1

)(
−Bm−1 −Bm

Bm Bm+1

)
.

So, (
Bn−m+1 Bn−m

−Bn−m −Bn−m−1

)
=

(
−Bn+1Bm−1 +BnBm −Bn+1Bm +BnBm+1

BnBm−1 −Bn−1Bm BnBm −Bn−1Bm+1

)
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This implies that
Bn−m = BnBm+1 −Bn+1Bm (2.1)

for all positive integers n ≥ m.

Note that if we extend the balancing number Bm to integer indices by setting
B−m = −Bm, then the formula (2.1) can be obtained from Theorem 2.3 by changing
m for −m.

Now, we find some interesting arithmetic properties of balancing numbers.

Lemma 2.1. Let m be a positive integer. Then gcd(Bm, Bm−1) = 1.

Proof. We have

gcd(Bk, Bk−1) = gcd(6Bk−1 −Bk−2, Bk−1) = gcd(Bk−1, Bk−2),

for all k ≥ 2. Thus, gcd(Bm, Bm−1) = gcd(B1, B0) = 1, as desired.

Theorem 2.4. Let m,n be positive integers. Then,

(i) Bn | Bmn.

(ii) if Bn | Bm then n | m.

Proof. (i) We prove this statement by induction on m. Since the statement is true for
m = 1, assume it is true for an arbitrary integer m ≥ 1, then by Theorem 2.3, we have

Bn(m+1) = Bn+nm

= Bn+1Bnm −BnBnm−1.

Since Bn | Bnm, by the inductive hypothesis, it follows that Bn | Bn(m+1). Thus, by
induction, Bn | Bmn for all integers m ≥ 1.

(ii) By the division algorithm, let m = nk+r, where 0 ≤ r < n. Then, by Theorem
2.3, we have

Bm = Bnk+r

= BnkBr+1 −Bnk−1Br.

Since Bn | Bm and Bn | Bnk, we have Bn | Bnk−1Br.

Moreover, by Lemma 2.1 we have gcd(Bnk, Bnk−1) = 1. It follows that
gcd(Bn, Bnk−1) = 1. Therefore, Bn | Br. But this is impossible, unless r = 0. So,
m = nk and hence n | m, as desired.

From Theorem 2.4, we obtain the following result.
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Corollary 2.3. Bn | Bm if and only if n | m.

Now, we have the following general result.

Theorem 2.5. Let m,n be positive integers. Then,

gcd(Bn, Bm) = Bgcd(n,m).

To prove this theorem, we need the two following lemmas.

Lemma 2.2. Let m, q be positive integers. Then gcd(Bqm−1, Bm) = 1.

Proof. This result follows directly from the proof of Theorem 2.4 (ii).

Lemma 2.3. Let n = mq + r, 0 ≤ r < m. Then gcd(Bn, Bm) = gcd(Bm, Br).

Proof. According to Theorem 2.1 and Lemma 2.2, we have

gcd(Bn, Bm) = gcd(Bmq+r, Bm)

= gcd(BqmBr+1 −BrBqm−1, Bm)

= gcd(BrBqm−1, Bm)

= gcd(Br, Bm)

= gcd(Bm, Br).

Proof of Theorem 2.5. Without loss of generality, we can assume that n ≥ m. Then, by
the euclidean algorithm, we get the following sequence of equations

n = q0m+ r1, 0 ≤ r1 < m

m = q1r1 + r2, 0 ≤ r2 < r1

r1 = q2r2 + r3, 0 ≤ r3 < r2
...

rk−2 = qk−1rk−1 + rk, 0 ≤ rk < rk−1

rk−1 = qkrk + 0.

It follows from a repeated application of Lemma 2.3 that

gcd(Bn, Bm) = gcd(Bm, Br1) = gcd(Br1 , Br2) = · · ·
= gcd(Brk−1

, Brk) = gcd(Bqkrk , Brk).

By Theorem 2.4, Brk | Bqkrk , then gcd(Bqkrk , Brk) = Brk . But rk = gcd(n,m), so
gcd(Bn, Bm) = Bgcd(n,m), as desired.
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This theorem gives a quick and efficient algorithm for computing the greatest
common divisor of any two balancing numbers.

Corollary 2.4. gcd(Bm, Bn) = 1 if and only if gcd(m,n) = 1.

Proof. By Theorem 2.5 and B1 = 1, we have the desired proof.

Remark 2.1. It follows from Theorem 2.5 that the least common multiple (lcm) of Bm

and Bn can also be computed quickly

lcm(Bn, Bm) =
BnBm

gcd(Bn, Bm)
=

BnBm

Bgcd(n,m)

.
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