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Abstract. In this paper, performance analysis and controller design problems
subject to an optimal attenuation level are studied for 2-D positive systems
with bounded input disturbances. First, some novel comparison techniques for
state estimations subject to peak values of external disturbances are presented
to derive a characterization for l∞-induced norm of the input-output operator.
Then, we derive the necessary and sufficient linear programming (LP) conditions
for obtaining a controller gain of an l∞-induced performance with a prescribed
attenuation level. Numerical examples are given to illustrate the effectiveness of
the proposed method.
Keywords: 2-D systems, Roesser model, positive systems, l∞-induced, linear
programming.

1. Introduction
Positive systems theory has been extensively studied in the past few decades due to

their elegant properties that have yet no counterpart in general dynamical systems [1]-[2].
Practical applications of positive systems have also been found in various areas such as
economics, biology, ecology, epidemiology, and chemistry, pharmacokinetics, population
dynamics or communication [3]-[5]. This theory and many problems in control theory
have also been developed for some 2-D systems recently [6]-[8].

On the other hand, exogenous disturbances are unavoidable in modeling
engineering systems due to many technical issues encountered in the data processing,
operation and information transmission. To evaluate the effectiveness of noises,
performance indicators such as l1, l2, H∞, or l∞ are widely used as the most important
tools [9]-[10]. Moreover, as discussed in the existing literature, various engineering
systems as wind shear on aircraft wings or continuous road excitation in vehicle
suspension systems are involved external disturbances, which are only persistent and
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amplitude-bounded rather than specifications on the total energy of a disturbance are
required [11]. Thus, the l∞-gain minimization is a more useful and effective approach
to examining the responses of dynamic systems corrupted by persistently bounded
disturbances [12].

For positive systems, the use of linear co-positive Lyapunov functions [13]-[14] is
one of the most popular approaches, which stimulates l∞ performance index, to deal with
the attenuation levels of persistent peak-bounded disturbances. However, considerably
less attention has been devoted to formulating l∞-gain characterization for 2-D positive
systems. In addition, due to technical challenges, one cannot directly extend such studies
to 2-D processes using conventional 1-D systems theory.

In this paper, we first formulate a characterization for l∞-gain performance for
2-D positive Roesser systems. We then utilize the obtained analysis result to derive
necessary and sufficient LP-based conditions for the existence of a static output-feedback
l∞-gain controller.

2. Preliminaries
Notations. Rn and Rm×n denote the n-dimensional vector space and the set of

m × n-matrices, respectively, 1n ∈ Rn denotes the vector with all entries equal one.
Max-norm of a matrix A = (aij) ∈ Rm×n is defined as ∥A∥∞ = max1≤i≤m

∑n
j=1 |aij|.

Comparisons between vectors x, y ∈ Rn are defined componentwise, that is, x ⪯ y if
xi ≤ yi and x ≺ y if xi < yi for all i ∈ [n]. A matrix A = (aij) ∈ Rm×n is nonnegative,
written as A ⪰ 0, if aij ≥ 0 for all i, j and A is positive, A ≻ 0, if aij > 0 for all i, j. The
absolute matrix of A = (aij) ∈ Rm×n is defined as |A| = (|aij|) ∈ Rm×n

+ . l∞-norm of
a two-variable function f : Z+ × Z+ → Rn is defined as ∥f∥l∞ = supk,l∈Z+

∥f(k, l)∥∞
and l∞(Rn) = {f : Z+ × Z+ → Rn : ∥f∥l∞ < ∞}.

Consider the following 2-D system described by the Roesser model[
xh(i+ 1, j)
xv(i, j + 1)

]
= A

[
xh(i, j)
xv(i, j)

]
+Bw(i, j), (2.1)

z(i, j) = C

[
xh(i, j)
xv(i, j)

]
+Dw(i, j), (2.2)

where xh(i, j) ∈ Rnh and xv(i, j) ∈ Rnv are the horizontal and vertical state vectors,
z(i, j) ∈ Rnz and w(i, j) ∈ Rnw are the regulated output and exogenous disturbance
input vectors, respectively, A, B, C, and D are given real matrices. Initial conditions of
system (2.1) are specified as

xh(0, j) = ϕh(j), j ∈ N0, xv(i, 0) = ϕv(i), i ∈ N0, (2.3)

where the initial functions ϕh, ϕv in are assumed to have finite support, that is, there exist
positive integers Th, Tv such that ϕh(j) = 0 for j ≥ Th and ϕv(i) = 0 for i ≥ Tv. This
assumption is widely adopted in analysis and control of 2-D systems.
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Definition 2.1. System (2.1)-(2.2) is said to be positive if for any initial functions ϕh, ϕv

and input w, it holds that{
ϕh(j) ⪰ 0, ϕv(i) ⪰ 0,

w(i, j) ⪰ 0
=⇒ x(i, j) ⪰ 0 and z(i, j) ⪰ 0

for all i, j ∈ N0, where x(i, j) =

[
xh(i, j)
xv(i, j)

]
is the overall state vector.

Similar to [7], it can be shown that system (2.1)-(2.2) is positive if and only if the

augmented matrix M =

[
A B
C D

]
is nonnegative.

Definition 2.2. System (2.1) without exogenous disturbance (i.e. w = 0) is said to be
globally exponentially stable (GES) if there exist scalars α ∈ (0, 1) and β > 0 such that
any solution x(i, j) of system (2.1) with initial condition (2.3) satisfies

∥x(i, j)∥∞ ≤ β

( i∑
k=0

ϕv(k)

αk+1
+

j∑
l=0

ϕh(l)

αl+1

)
αi+j, i, j ∈ N0. (2.4)

It was derived in [7] that positive 2-D system (2.1) with w = 0 is GES if and only
if there exists a vector 0 ≺ χ ∈ Rn such that

Aχ− χ ≺ 0. (2.5)

This condition is satisfied if and only if the matrix A is Schur stable, that is, the spectral
radius of the matrix A satisfies ρ(A) < 1 (see, [15]).

We denote by l∞(Rnw) the space of all bounded sequences w, that is,

l∞(Rnw) =
{
w : Z+ × Z+ → Rnw

∣∣∥w∥l∞ < ∞
}
.

In this paper, the disturbance w(i, j) is assumed to belong to l∞(Rnw). Assume that
system (2.1) without disturbance is GES. We define an input-output operator for system
(2.1) as

Tw,z : l∞(Rnw) −→ l∞(Rnz), w 7→ z

and l∞-gain of system (2.1) under zero initial condition is defined by

∥Tw,z∥l∞−l∞ = sup
∥w∥l∞ ̸=0

∥z∥l∞
∥w∥l∞

= sup
∥w∥l∞=1

∥z∥l∞ . (2.6)

Definition 2.3. For a given scalar γ > 0, system (2.1) is said to have l∞-gain performance
of level γ if, under zero initial condition, it holds that ∥Tw,z∥l∞−l∞ < γ. In other words,
for any nonzero disturbance w ∈ l∞(Rnw), and under zero initial condition, the output
trajectory z(i, j) of system (2.1) satisfies

∥z(i, j)∥∞ < γ∥w(i, j)∥∞, i, j ≥ 0.

The main objective of this paper is to formulate the value of l∞-gain ∥Tw,z∥l∞−l∞

for system (2.1) and characterize the l∞-gain performance index by establishing LP-based
necessary and sufficient conditions.
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3. Main results
Let xw(i, j) denote the solution of (2.1) with zero initial condition corresponding

to input w. For any w1, w2 ∈ l∞(Rnw), if w1 ⪯ w2 then xw̃(i, j) = xw2(i, j) − xw1(i, j)
is a solution of system (2.1) with zero initial condition and nonnegative input

w̃(i, j) = w2(i, j)− w1(i, j) ⪰ 0.

Thus, due to the positivity of system (2.1), xw̃(i, j) ⪰ 0 for all i, j ≥ 0. Based on this
observation, we have the following technical lemma.

Lemma 3.1. For any w1, w2 ∈ l∞(Rnw), if w1 ⪯ w2 then xw1 ⪯ xw2 .

For any w ∈ l∞(Rnw), it is obvious that −|w| ⪯ w ⪯ |w|. Thus, by Lemma 3.1,
we have −x|w| ⪯ xw ⪯ x|w|. This shows that |xw(i, j)| ⪯ x|w|(i, j). In addition, for a
w ∈ l∞(Rnw), we define an upper bound vector w = ∥w∥l∞1nw . Then,

|w(i, j)| ⪯ ∥w(i, j)∥∞1nw ⪯ w.

Now, to formulate an upper estimate for x(i, j) and z(i, j) with respect to an input
w, we consider the following positive 2-D system[

x̄h(i+ 1, j)
x̄v(i, j + 1)

]
= A

[
x̄h(i, j)
x̄v(i, j)

]
+Bw, (3.1)

z̄(i, j) = C

[
x̄h(i, j)
x̄v(i, j)

]
+Dw, (3.2)

where w ∈ l∞(Rnw) and w = ∥w∥l∞1nw .

Lemma 3.2. For any w ∈ l∞(Rnw), w ⪰ 0, let xw, x̄w and zw, z̄w be the state and output
trajectories of systems (2.1)-(2.2) and (3.1)-(3.2) with zero initial condition. The, we have

0 ⪯ xw ⪯ x̄w and 0 ⪯ zw ⪯ z̄w.

Proof. Let ē(i, j) = x̄w(i, j)− xw(i, j). It follows from (2.1) and (3.1) that[
ēh(i+ 1, j)
ēv(i, j + 1)

]
= A

[
ēh(i, j)
ēv(i, j)

]
+B (w − w(i, j)) . (3.3)

Since w − w(i, j) ⪰ 0 and system (3.3) is positive, we have ē(i, j) ⪰ 0 and, thus,
xw(i, j) ⪯ x̄w(i, j) for all i, j ≥ 0. In addition, it follows from (2.2) and (3.2) that

z̄w(i, j)− zw(i, j) = Cē(i, j) +D (w − w(i, j)) ⪰ 0,

which ensures that zw(i, j) ⪯ z̄w(i, j).
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To establish a lower bound for x(i, j) and z(i, j), similar to (3.1)-(3.2), we consider
the following system [

xh(i+ 1, j)
xv(i, j + 1)

]
= A

[
xh(i, j)
xv(i, j)

]
+Bw, (3.4)

z(i, j) = C

[
xh(i, j)
xv(i, j)

]
+Dw, (3.5)

where w ∈ Rnw
+ is a constant vector such that w(i, j) ⪰ w.

Lemma 3.3. For a w ∈ l∞(Rnw) and a vector w ∈ Rnw
+ such that w(i, j) ⪰ w, let xw, xw

and zw, zw be the state and output trajectories of systems (2.1)-(2.2) and (3.4)-(3.5) with
zero initial condition. Then, we have

0 ⪯ xw ⪯ xw and 0 ⪯ zw ⪯ zw.

Assume that the matrix A of (2.1) is Schur stable. Then, the matrix In − A is
invertible and we have

(In − A)−1 =
∞∑
k=0

Ak ⪰ 0.

A constant vector xe ∈ Rn
+ is said to be a positive equilibrium (PE) of system (3.1) if it

satisfies the following algebraic equation

xe = Axe +Bw. (3.6)

It can be verified from (3.1) and (3.6) that, subject to condition ρ(A) < 1, the
unique PE of system (3.1) can be represented as xe = (In − A)−1Bw.

Lemma 3.4. For any w ∈ l∞(Rnw), the solution xw of (2.1) with zero initial condition
satisfies

|xw(i, j)| ⪯ ∥w∥l∞ (In − A)−1B1nw = xe. (3.7)

In particular, xw also belongs to l∞(Rn).

Proof. Since |w(i, j)| ⪯ w, by Lemmas 3.1 and 3.2, we have

|xw(i, j)| ⪯ x|w|(i, j) ⪯ x̄w(i, j). (3.8)

Let ê(i, j) = xe − x̄w(i, j). Then, it follows from (3.1) and (3.7) that[
êh(i+ 1, j)
êv(i, j + 1)

]
= A

[
êh(i, j)
êv(i, j)

]
. (3.9)

System (3.9) is positive and ê(0, 0) = xe ⪰ 0. Thus, ê(i, j) ⪰ 0. This, together with
(3.8), gives |xw(i, j)| ⪯ xe, by which we can obtain

∥xw∥l∞ = sup
i,j≥0

∥xw(i, j)∥∞ ≤ ∥xe∥∞.

The proof is completed.
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Remark 3.1. It can be shown under condition (2.5) that the positive 2-D system (3.9)
is GES. Thus, the state trajectory x̄w(i, j) of (3.1) increases exponentially to xe. More
precisely, there exists an α ∈ (0, 1) such that

0 ⪯ xe − x̄w(i, j) = ê(i, j) ⪯ xeα
i+j (3.10)

for a given w ∈ l∞(Rnw). From (3.10), we obtain the interval estimate(
1− αi+j

)
xe ⪯ x̄w(i, j) ⪯ xe, (3.11)

where xe = ∥w∥l∞ (In − A)−1B1nw .

Theorem 3.1. Assume that the 2-D system (2.1) is positive and GES. The value of l∞-gain
of system (2.1) under zero initial condition can be expressed as

∥Tw,z∥l∞−l∞ =
∥∥C (In − A)−1B +D

∥∥
∞ . (3.12)

Proof. For any w ∈ l∞(Rnw), by Lemma 3.2, we have

|zw(i, j)| ⪯ z|w|(i, j) ⪯ z̄(i, j).

We will show that

z̄(i, j) ⪯ ∥w∥l∞
[
C (In − A)−1B +D

]
1nw .

Indeed, as shown in the proof of Lemma 3.4 that x̄(i, j) ⪯ xe for all i, j ≥ 0. This,
together with (3.2), gives

z̄(i, j) ⪯ Cxe +Dw = Ψ1nw∥w∥l∞ , (3.13)

where Ψ = C (In − A)−1B +D. From (3.13) and the fact zw(i, j) ⪯ z̄(i, j), we obtain

∥zw(i, j)∥∞ ≤ ∥z̄(i, j)∥∞ ≤ ∥Ψ1nw∥∞ ∥w∥l∞ . (3.14)

It follows from (3.14) that

∥Tw,z∥l∞−l∞ = sup
w ̸=0

∥zw∥l∞
∥w∥l∞

≤ ∥Ψ1nw∥∞ = ∥Ψ∥∞. (3.15)

To complete the proof, we will show that ∥Tw,z∥l∞−l∞ ≥ ∥Ψ∥∞. Let w0 ∈ l∞(Rnw)
be a given sequence with ∥w0∥l∞ > 0. We define

w(i, j) = w = ∥w0∥l∞1nw , i, j ≥ 0.

By Lemma 3.3, we have
zw(i, j) ⪰ zw(i, j), i, j ≥ 0.
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In addition, with the input w, the unique PE of (3.4) is given by

xe = (In − A)−1Bw.

Similar to the proof of Lemma 3.4 and Remark 3.1, we can conclude under
condition (2.5) that there exists a scalar α̂ ∈ (0, 1) such that(

1− α̂i+j
)
xe ⪯ xw(i, j) ⪯ xe. (3.16)

Therefore, from (3.5) and (3.16), we obtain

zw(i, j) ⪰ θ̂i,jCxe +Dww, (3.17)

where θ̂i,j = 1− α̂i+j . From (3.17), we get

sup
i,j≥0

∥zw(i, j)∥∞ ≥ lim sup
i+j→∞

∥∥∥θ̂i,jCxe +Dw
∥∥∥
∞

= ∥Cxe +Dw∥∞
= ∥Ψ1nw∥∞∥w0∥l∞
= ∥Ψ∥∞∥w0∥l∞ . (3.18)

It follows from (3.18) and the fact ∥zw∥l∞ ≥ supi,j≥0 ∥zw(i, j)∥∞ that

∥Tw,z∥l∞−l∞ = sup
∥w0∥l∞=1

∥zw∥l∞ ≥ ∥Ψ∥∞. (3.19)

The results of (3.15) and (3.19) ensure that ∥Tw,z∥l∞−l∞ = ∥Ψ∥∞. The proof
is completed.

Based on Theorem 3.1, we now derive tractable necessary and sufficient conditions
for the design problem of an l∞-gain controller. More precisely, we formulate LP-based
conditions such that, for a given attenuation level γ > 0, the closed-loop l∞-gain satisfies
∥Tw,z∥l∞−l∞ < γ.

Theorem 3.2. For a given γ > 0, the positive 2-D system (2.1) is GES and has l∞-gain
performance at level γ if and only if there exists a positive vector χ ∈ Rn that satisfies
the following LP-based conditions

(A− In)χ+B1nw ≺ 0, (3.20)
Cχ+D1nw − γ1nz ≺ 0. (3.21)

Proof. (Necessity) Let χ0 ∈ Rn be a positive vector that satisfies the stability condition
(2.5). For sufficiently small ϵ > 0, we define

χ = ϵχ0 + (In − A)−1B1nw .
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It is clear that χ ≻ 0 and we have

(A− In)χ+B1nw = ϵ(A− In)χ0 ≺ 0. (3.22)

On the other hand, by Theorem 3.1, ∥Tw,z∥l∞−l∞ < γ if and only if

Γ =
[
C(In − A)−1B +D

]
1nw ≺ γ1nz .

Thus, ζ = γ1nw − Γ ≻ 0 and

Cχ+D1nw − γ1nz = ϵCχ0 − ζ ≺ 0. (3.23)

(Sufficiency) Since B1nw ⪰ 0, condition (3.20) implies (2.5). Thus, system (2.1)
with w = 0 is GES. Let

χ̃ = (A− In)χ+B1nw

then χ̃ ≺ 0 and χ = (A− In)
−1 (χ̃−B1nw). It follows from (3.21) that

γ1nz ≻ Cχ+D1nw

= C(A− In)
−1χ̃+Ψ1nw , (3.24)

where the matrix Ψ is defined in the proof of Theorem 3.1.
For any w ∈ l∞(Rnw) with ∥w∥l∞ = 1, since (A − In)

−1χ̃ ≻ 0, from (3.24),
we obtain

∥z∥l∞ ≤ ∥Ψ1nw∥∞ < γ.

The proof is completed.

The following alternative performance conditions can be obtained by similar
arguments used in the proof of Theorem 3.2.

Theorem 3.3. For a given γ > 0, the positive system (2.1) is GES and has l∞-gain
performance at level γ if and only if the following LP-based conditions are feasible for a
vector 0 ≺ η ∈ Rn

η⊤ (A− In) + 1⊤nz
C ≺ 0, (3.25)

η⊤B + 1⊤nz
D − γ1⊤nw

≺ 0. (3.26)

4. Static-output feedback l∞-gain control
Consider the following control system[

xh(i+ 1, j)
xv(i, j + 1)

]
= A

[
xh(i, j)
xv(i, j)

]
+Buu(i, j) +Bw(i, j),

z(i, j) = C

[
xh(i, j)
xv(i, j)

]
+Duu(i, j) +Dw(i, j),

xmes(i, j) = Mx(i, j) +Nw(i, j),

(4.1)
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where u(i, j) ∈ Rnu is the control input and xmes(i, j) ∈ Rno is the measurement output
vector, Bu, Du, M , N are given real matrices.

A static output-feedback controller (SOFC) will be designed in the form

u(i, j) = −Kxmes(i, j) (4.2)

to make the closed-loop system positive, GES and admit a prescribed l∞-gain
performance, where K ∈ Rnu×no is the controller gain. The closed-loop system of (4.1)
subject to SOFC (4.2) is obtained as[

xh(i+ 1, j)
xv(i, j + 1)

]
= Ac

[
xh(i, j)
xv(i, j)

]
+Bcw(i, j),

z(i, j) = Cc

[
xh(i, j)
xv(i, j)

]
+Dcw(i, j),

(4.3)

where Ac = A−BuKM , Bc = B−BuKN , Cc = C−DuKM and Dw = D−DuKN .
First, it can be verified that system (4.3) is positive if and only if[

A B
C D

]
−
[
Bu

Du

]
K

[
M N

]
⪰ 0. (4.4)

In addition, for a given γ > 0, by Theorem 3.2, system (4.3) is GES and has l∞-gain
performance at level γ if and only if the LP-based condition(

A−
[
Bu

Du

]
K

[
M N

])⊤ [
χ
1nz

]
≺ γ

[
0

1nw

]
(4.5)

is feasible for a vector 0 ≺ χ ∈ Rn, where A =

[
A− In B

C D

]
.

In the following, based on the ideas of vertex optimization proposed in [7], we
derive optimal conditions for the existence of a controller gain K satisfying (4.4)-(4.5)
for the case of single-input systems (i.e. nu = 1).

Let G =

[
B
D

]
= (gi) ∈ Rn+no

+ and assume G ̸= 0 (i.e. at least one component

gi > 0). We denote

M =

[
A B
C D

]
= (mij) ∈ R(n+nz)×(n+nw)

+

and decompose the matrix

H =
[
M N

]
=

[
h1 h2 · · · hn+nw

]
,

where hj ∈ Rno .
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The controller gain matrix can be specified as K = k⊤, k ∈ Rno . Thus, condition
(4.5) holds if and only if

k⊤hj ≤ θ∗j ≜ min1≤i≤n+nz

{
mij

gi
: gi > 0

}
. (4.6)

According to (4.6), we define the polyhedron ∆P by

∆P =
{
k ∈ Rno

∣∣∣k⊤H ⪯ θ∗
}
, (4.7)

where θ∗ =
[
θ∗1 θ∗2 · · · θ∗n+nw

]
. Assume that the matrix H =

[
M N

]
has full-row

rank. Then, equation (4.7) defines a nonempty convex polyhedron. Let V be the set of
vertices of ∆P .

For a fixed vector χ ≻ 0, the function φχ(k) = k⊤Hχ is continuous and, thus,
attains its maximum on the compact Ω = ∆P ∩ {k ∈ Rno : φχ(k) ≥ 0}.

Lemma 4.1. There exists a vertex kv ∈ V such that φχ(kv) = maxk∈∆P
φχ(k).

Proof. See, for example, Lemma 3 in [7].

The following theorem gives a criterion in terms of LP-based conditions for the
existence of a desired l∞-gain controller (4.2).

Theorem 4.1. For a given γ > 0, there exists an SOFC in the form of (4.2) that makes
the closed-loop system (4.3) positive, GES and admit an l∞-gain performance at level γ
if and only if there exists a vertex k∗

v ∈ V of ∆P such that the LP-based problem([
A− In B

C D

]
−
[
Bu

Du

]
k∗⊤
v

[
M N

]) [
χ
1nw

]
≺ γ

[
0
1nz

]
(4.8)

is feasible for a positive vector χ ∈ Rn.

Proof. The Sufficiency is obvious. We now prove the Necessity. Let K = k⊤
0 be a desired

controller gain. Then, by (4.4)-(4.7), k0 ∈ ∆P .
If k0 /∈ V , we consider the optimization problem

maximize φχ(k) = k⊤H

[
χ
1nw

]
s.t. k ∈ ∆P . (4.9)

By Lemma 4.1, there exists a vertex k∗
v ∈ V such that

φχ(k
∗
v) = max

k∈∆P

φχ(k).

Since φχ(k) ≤ φχ(k
∗
v) for all k ∈ ∆P , we have(
A−Gk∗⊤

v H
) [ η

1nw

]
⪯ (A−GKH)

[
η
1nw

]
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for any K satisfying (4.4), where

A =

[
A− In B

C D

]
and G =

[
Bu

Du

]
.

The above inequality validates condition (4.8). The proof is completed.

Remark 4.1. It should be clarified that the controller synthesis conditions derived in
Theorem 4.1 are restricted to single-input systems (i.e. u(i, j) ∈ R1). Potential extensions
to positive 2-D systems with multiple inputs can be suitably developed utilizing the method
proposed in [7]. However, it requires further technical development as l∞-gain can be
regarded as a dual setting of l1-gain. This motivates some future work.

Remark 4.2. For single-input single-output systems, an optimal controller gain is
obtained explicitly as

K = k∗
op = min

{
mij

gihj

: gihj > 0

}
and a desired SOFC (4.2) exists if and only if there exists a vector 0 ≺ χ ∈ Rn such that(

A− k∗
opGH

) [ χ
1nw

]
≺ γ

[
0
1nz

]
. (4.10)

5. Illustrative examples
Example 5.1. Consider a 2-D system as given in (2.1)-(2.2) with the matrices

A =

0.15 0.03 0.05
0.18 0.25 0.35
0.2 0.15 0.2

 , B =

0.250.15
0.05

 ,

C =

[
0.25 0.35 0.48
0.5 0.6 0.15

]
, D =

[
0.35
0.16

]
.

By using a the MATLAB linprog Toolbox, it is found that the LP-based
conditions (3.20)-(3.21) are feasible with γ ≥ γmin ≜ 0.5608.

To support the illustration of the analysis results, we conduct some state trajectories
of output z(i, j) with respect to ∥w∥l∞ = 1 and zero initial condition. The obtained
results are presented in Figure 1 (a)-(b). In addition, the corresponding trajectory of
input w(i, j) is drawn in Figure 2. The simulation results in Figures 1 and 2 indicate that
∥z∥l∞ < γmin∥w∥l∞ as revealed by the obtained theoretical results.

Example 5.2. Consider system (4.1) with the following system matrices

A =

1.0 0.2 0.15
0.2 0.4 0.45
0.2 0.35 0.7

 , Bu =

1.00
1.0

 , B =

 0.1
0

0.15


C =

[
0.2 0.25 0.3
0.4 0.19 0.25

]
, D =

[
0.15
0.2

]
, M =

[
1.0 1.0 0

]
, N = 0.1.
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Figure 1. State trajectories of z1(i, j) and z2(i, j) with zero initial condition and
∥w∥l∞ = 1
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Figure 2. A state trajectory of disturbance w(i, j) with ∥w∥l∞ = 1

Note at first that the unforced system (without control) is unstable. Figure 3 presents
a state trajectory ∥z(i, j)∥∞ of the output under zero initial condition. It can be seen from
Figure 3 that the output goes to infinity as i+ j → ∞.

We apply the design method of Theorem 4.1. It can be verified that the set V is
singleton {k∗

op}, where

k∗
op = min

{
mij

gjhj

∣∣∣ gihj ̸= 0

}
= 0.2

and condition (4.8) is feasible for a vector χ ≻ 0 if and only if γ > γmin = 1.54. By
Theorem 4.1, the closed-loop system (4.3) is positive, GES and has l∞-gain performance
at level γ > γmin.

State trajectories z1(i, j) and z2(i, j) of the closed-loop system with ∥w∥l∞ = 1
under zero initial condition are presented in Figure 4. The simulation result in Figure 4
shows the effectiveness of the analysis results.
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Figure 3. An open-loop trajectory ∥z(i, j)∥∞ with ∥w∥l∞ = 1 and zero initial condition
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Figure 4. State trajectories of z1(i, j) and z2(i, j) of the closed-loop system with zero
initial condition and ∥w∥l∞ = 1

6. Conclusions
In this paper, the problems of performance analysis and controller design subject

to optimal attenuation level have been addressed for 2-D positive systems with bounded
disturbances. A characterization of l∞-induced norm of the input-output operator has
been formulated and LP-based conditions for l∞-induced performance of the system with
a prescribed attenuation level have been formulated. As an application, the problem
of l∞-gain control via static output-feedback controllers has also been discussed. A
numerical example with simulations has been provided to illustrate the effectiveness of
the proposed method.
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