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Abstract. In this work, we establish an extended LaSalle’s invariance for a class of
nonautonomous differential inclusions in Euclidean spaces. We also give sufficient
conditions for the stability of an equilibrium of differential variational inequalities.
Special cases as linear complementarity problems, based on LaSalle’s invariance
in both autonomous and non-autonomous cases, are also studied in this paper.
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1. Introduction
Differential variational inequalities (abbreviated by DVIs) have been combined by

two components: differential equations/inlusions and variational inequalities. The DVI is
a new modeling paradigm for many important applications in engineering and economics
which presents dynamics mixed constraints in the form of variational inequalities,
equilibrium conditions in a systematic way [1], [2]. These systems extend the notion
of differential complementarity problems [3], dynamical Nash equilibrium problems [4],
parameter estimation in metabolic flux balance models [5] and have been studied by
numerous authors [6]-[9], etc.

In this paper, we are concerned with the nonlinear differential variational inequality
of the following form

x′(t) ∈ Ax(t) +B(t, x(t), u(t)), t > 0, (1.1)
⟨v − u(t), F (x(t)) +G(u(t)⟩ ≥ 0,∀v ∈ K, for a.e. t ≥ 0, (1.2)
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x(0) = ξ, (1.3)

where A is a linear operator, B,F,G are given maps. It should be highlighted that, when
(1.1) is a differential equation, problem (1.1)-(1.3) is called a differential system with
unilateral constraints in the theory of differential equations. Such problems can be seen
as a control system subject to constraints.

An approach to tackle the above problem is to transfer (1.1)-(1.3) to a differential
inclusion. By substituting u from (1.2) into the inclusion (1.1), we get

x′(t) ∈ Ax(t) +B(t, x(t), SOL(K,F (x(t)) +G(·))),
where SOL(K, z + G(·)) refers the solution set of the variational inequality ⟨v − u, z +
G(u(t)⟩ ≥ 0,∀v ∈ K.

One of the most widely adopted stability concepts is Lyapunov stability, which
plays important roles in systems and control theory and in the analysis of engineering
systems (see [10]). LaSalle’s invariance principle is an important extension which applies
successfully in the stability analysis of autonomous smooth systems (see, e.g., [11]). In
the case of nonautonomous differential equations, the author handled the stability of
solutions with the help of limit differential inclusions (see [12]-[15]). However, to the
best of our knowledge, there is no effort on the invariance principle of LaSalle-type for
nonautonomous differential inclusions, and this fact is the main goal in the present paper.

Our contribution is to establish an extension of LaSalle’s invariance principle for
nonautonomous differential inclusions and to give some applications to some class of
differential variational inequalities. Consider the differential inclusion of the form:

ẋ(t) ∈ Φ(t, x(t)), (1.4)

where Φ is a multivalued map with suitable conditions. A natural question is the
following: If V (x) is a Lyapunov function such that V̇ (x) ≤ 0, is it possible to conclude
that a bounded solution x(t;x0) converges to the set E defined by V̇ (x) = 0? In
general, the answer is no and a direct application of LaSalle’s invariance principle is
not very helpful in such a situation because the limit set of a nonautonomous system is
not invariant. We need to transfer our problem to an autonomous problem by the sense of
limiting differential inclusions.

The remainder of this paper is organized as follows. In Section 2, we establish
an extended LaSalle’s invariance principle. In Section 3, we use the obtained results of
Section 2 to nonautonomous differential variational inequalities and differential linear
complementarity problems.

2. Extended LaSalle’s invariance principle
2.1. Stability

In this section, we recall the concepts of stability and asymptotic stability for the
zero solution of a differential inclusion and consider some methods that may be used to
prove the stability.
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Let Φ : J := R+×Rn → Rn be given where 0 ∈ Φ(t, 0) for a.e t ≥ 0. We consider
the following differential inclusion:

x′(t) ∈ Φ(t, x(t)), t > 0. (2.1)

In what follows, we use the assumptions that

(A1) Φ has nonempty, convex, compact values and Φ(t, ·) is u.s.c for all t ≥ 0, Φ(·, x) is
measurable for each x ∈ Rn.

(A2) There exists a function η(·) ∈ L1(J,Rn) such that ∥Φ(t, x)∥ ≤ η(t)(1 + ∥x∥) for
all x ∈ Rn, for a.e. t ∈ J .

Thus, if the assumption (A1) and (A2) are satisfied, then the inclusion (2.1) with any
initial data in Rn has at least one solution.

Let S(ξ) be the set of solutions starting at ξ and W be the set of stationary solutions
of (2.1):

N = {y ∈ Rn : 0 ∈ Φ(t, y), a.e. t ≥ 0}.

Then we have 0 ∈ N .

Definition 2.1. The equilibrium point x = 0 is said to be

(i) stable if for any ϵ > 0, there exists a δ(ϵ) > 0 such that for all ξ ∈ Bδ(ϵ), ∥x(t; ξ)∥ ≤
ϵ,∀t ≥ 0;

(ii) for any ϵ > 0, there exists a δ(ϵ) > 0 such that for all ξ ∈ Bδ(ϵ), lim
t→∞

∥x(t; ξ)∥ = 0;

(iii) globally attractive if for all ξ ∈ Rn, lim
t→∞

∥x(t; ξ)∥ = 0;

(iv) asymptotically stable if it is stable and attractive;

(v) globally asymptotically stable if it is stable and globally attractive.

Let us denote the set-valued orbital derivative of a continuously differentiable
function V : B̄σ ∈ Rn → R (for some σ > 0) with respect to the differential inclusion
(2.1):

V̇Φ(t, x) = {p ∈ R : ∃ω ∈ Φ(t, x) such that p = ⟨V ′(x), ω⟩}.

The upper and lower orbital derivatives of V with respect to the differential
inclusion (2.1) are sequentially defined by

V̇ ∗
Φ(t, x) = max

ω∈Φ(t,x)
⟨V ′(x), ω⟩, V̇∗Φ(t, x) = minω∈Φ(t,x)⟨V ′(x), ω⟩.
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Remark 2.1. (1) We have V̇Φ(t, x) is a non-empty, convex compact subset in R .
Therefore, V̇Φ(t, x) is of the following form: V̇Φ(t, x) = [V̇∗Φ(t, x), V̇

∗
Φ(t, x)].

(2) If x(t) is a solution of (2.1) then:

d

dt
V (x(t)) ∈ V̇Φ(t, x(t)), a.e. t ≥ 0.

(3) Let y ∈ N , i.e. 0 ∈ Φ(t, y) a.e. t ≥ 0. By definition of V̇Φ, it is easy to see
that 0 ∈ V̇Φ(t, y) for a.e. t ≥ 0. It means that N ⊂ Z := {y ∈ Rn : 0 ∈
V̇Φ(t, y), a.e. t ≥ 0}.

(4) In the autonomous case, i.e. Φ does not depend on t, the set-valued orbital
derivative and the upper and lower orbital derivatives of V also do not depend on
t, and we also receive the results as a special case of nonautonomous differential
inclusions.

Definition 2.2. (i) Let V : B̄σ ∈ Rn → R be a continuous function such that V (0) =
0. We say that V is positive definite if V (0) > 0 for all x ∈ B̄σ \ {0}.

(ii) A Lyapunov function for (2.1) is a positive definite continuously differentiable
function V : B̄σ ∈ Rn → R such that V̇ ∗

Φ(t, x) ≤ 0 for all x ∈ B̄σ \ {0}, for
a.e. t ≥ 0.

Theorem 2.1. Suppose that (A1) and (A2) hold. If there is a Lyapunov function V
associated with the problem (2.1), then the trivial solution is asymptotically stable.

Proof. Since V : B̄σ → R is a Lyapunov function for (2.1), V is positive definite
continuously differentiable function, there exists a strictly increasing function α(·) ∈
C(R+;R) with α(0) = 0 and a positive number σ such that:

V (x) ≥ α(x) for all x ∈ B̄σ.

Without loss of generality, let 0 < ϵ < σ and put c = α(ϵ). According to the
positive definiteness of V , there exists a constant η > 0 such that Bη ⊂ Ω0

c = {x ∈
Rn : V (x) < c}. Now we let σ = min{ϵ, η}. Take ξ ∈ Bδ and x(t; ξ) is a solution of
(2.1) satisfying the initial condition x(0) = ξ . Suppose that there exists t1 ≥ 0 such that
∥x(t1; ξ)∥ ≥ ϵ. Since x(·; ξ) is continuous, we may find some t∗satisfying: ∥x(t∗; ξ)∥ = ϵ.
Then, V (x(t∗; ξ)) ≥ α(∥x(t∗; ξ)∥) = α(ϵ). On the other hand, V is decreasing along the
trajectory on the time interval [0, t∗] due to Remark 2.1 and the fact that V ∗(t, x) ≥ 0 for
all x ∈ B̄σ . Hence, we have V (x(t∗; ξ)) ≤ V (ξ) < c = α(ϵ). Our proof is finished by
the contradiction.

Theorem 2.2. Let (A1) and (A2) hold. If there exists a Lyapunov function V for problem
(2.1) such that V̇ ∗

Φ(t, x) ≤ −λV (x) for all x ∈ B̄σ and for some λ > 0, for a.e. t ≥ 0.
Then the trivial solution is asymptotic stable.
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Proof. By Theorem 2.1, the trivial solution is stable. Hence, we can choose the number
δ > 0 such that for all ξ ∈ Rn and ∥ξ∥ < δ, we have x(t; ξ) ∈ B̄σ for every t ≥ 0. On

the other hand, we have
d

dt
V (x(t)) ∈ V̇Φ(t, x(t)) a.e. t ≥ 0 and V̇ ∗

Φ(t, x) ≤ V (x) for all

x ∈ B̄σ. Then, we have:

d

dt
V (x(t)) ≤ −λV (x(t)), a.e. t ≥ 0.

Taking the integration of both sides of this inequality, we obtain:

V (x(t)) ≤ V (ξ)e−λt, t ≥ 0.

Therefore:
0 ≤ α(∥x(t)∥) ≤ V (ξ)e−λt, t ≥ 0.

It follows from the fact that α(·) is strictly increasing, we obtain:

lim sup
t→+∞

∥x(t)∥ = 0.

Then,
lim

t→+∞
∥x(t)∥ = 0,

which leads to the result of the theorem.

2.2. The invariance principle

We will generalize LaSalle’s invariance principle to prove the asymptotic stability
of the trivial solution. First, we recall some definitions and properties. Let ξ ∈ Rn and
x(t; ξ) be a solution of (2.1), denote the orbit of x by:

γ(x) = {x(t; ξ) : t ≥ 0} ⊂ Rn,

and the limit set of x by:

Λ(x) = {p ∈ Rn : ∃{ti}, ti → +∞ as i→ +∞ and x(ti; ξ) → p}.

Definition 2.3. A set S ⊂ Rn is said weakly invariant if and only if for ξ ∈ S, there exists
a solution of (2.1) starting at ξ contained in S. It is said to be invariant if and only if for
ξ ∈ S, all solutions of (2.1) starting at ξ are contained in S.

Assume that Φ(·, ·) is weakly asymptotically autonomous, i.e. there exists Φ∗ : x→
Φ∗(x) ⊂ Rn such that Φ∗ is u.s.c and takes non-empty convex compact values such that
for any compact C ⊂ Rn, and any ϵ > 0, there exists a T ≥ 0 satisfying

ess sup
t≥T

distH(Φ(t, y),Φ
∗(y)) < ϵ,∀y ∈ C, (2.2)
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where distH denotes the Hausdorff semidistance between two subsets. Then, the
weakly-limiting DI is

x′(t) ∈ Φ∗(x(t)). (2.3)

We define a multivalued map Φ(·, ·) is strongly asymptotically autonomous, if there
exists Φ̂∗ such that Φ̂∗ is u.s.c and takes non-empty convex compact values such that for
any compact C ⊂ Rn, there exists T ≥ 0 satisfying

Φ(t, x) ⊂ Φ̂∗(x),∀t ≥ T. (2.4)

Then, the strongly-limiting DI is

x′(t) ∈ Φ̂∗(x(t)). (2.5)

We recall that

V̇Φ∗(y) := {⟨V ′(y), ω⟩ : ω ∈ Φ∗(y)}, V̇ ∗
Φ∗(y) = sup

ω∈Φ∗(y)

⟨V ′(y), ω⟩.

In the case Φ is a singleton, H. Logemann and E. P. Ryan [14] proved the weak
invariance with respect to the associated autonomous inclusions (2.3) of the w−limit set
Λ(x) whenever x(·) is a solution of converting differential inclusion (2.1). Here, we have
such a situation in the multivalued case.

Lemma 2.1. If x(·) is a bounded solution of (2.1), then the limit set Λ(x) of x(·) is
non-empty, compact and connected, is approached by x and is weakly invariant with
respect to (2.3).

Proof. The argument to prove this lemma based on [14, Proposition 4.1], where we
replace the limiting mapping fn by

fn(t) := distH(Φ(t+ tn, xn(t)),Φ
∗(xn(t))) +

1

n
, ∀t ≥ 0.

Theorem 2.3. (Invariance theorem) Suppose that there exist a function V ∈ C1(Rn,R)
such that V̇ ∗

Φ(t, y) ≤ 0 for a.e. t ≥ 0 and y ∈ Rn. Let Ω be a compact invariant subset
with respect to (2.1) of Rn, ξ ∈ Ω and x(·; ξ) is a solution of (2.1). Let Z = {y ∈ Rn :
0 ∈ V̇Φ∗(y)} and M be the largest weakly invariant subset with respect to (2.3) in the
closure of Z then:

lim
t→+∞

dist(x(t; ξ),M) = 0.
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Proof. Because ξ ∈ Ω and Ω is invariant, we have γ(x) ∈ Ω. Therefore, γ(x) is bounded
and by Lemma 2.1, we obtain:

lim
t→+∞

dist(x(t; ξ),Λ(x)) = 0.

Thus, it is enough to prove that Λ(x) ⊂ Z̄ due to the weak invariance with respect to
(2.3) of Λ(x). Note that the function V (·) is of C1 class, it is bounded on the compact
set Ω. We imply that V (x(·)) is decreasing on R+ since V̇ ∗

Φ(t, y) ≤ 0 for a.e. t ≥ 0 and
y ∈ Rn. Therefore, there exists a real number k such that lim

t→+∞
V (x(t; ξ)) = k. For each

p ∈ Λ(x), there exist {ti}, ti → +∞ as i → +∞ and x(ti; ξ) → p. Then, V (p) = k
due to the continuity of V (·). Hence, V (p) = k for all p ∈ Λ(x). Let z ∈ Λ(x). Since
Λ(x) is weakly invariant with respect to (2.3), there exists a solution ϕ(t; z) of (2.3) lying
in Λ(x). Therefore: V (ϕ(t; z)) = k, for all t ≥ 0 which implies:

0 =
d

dt
V (ϕ(t; z)) ∈ V̇Φ∗(ϕ(t, z)),

for almost all t ≥ 0. Hence, we have

ϕ(t; z) ∈ Z

for almost all t ≥ 0. Since ϕ(·; z) is continuous, we obtain:

z = ϕ(0; z) ∈ Z̄,

and the result follows.

3. Application in differential variational inequalities
In (1.1) - (1.3), we suppose that A,F,G satisfy the assumptions as follows.

(A) A is k-Lipschitz (not neccessary be a linear operator).

∥B(u)v∥ ≤ ηB(∥u∥+ ∥v∥), for some ηB > 0, ∀u ∈ Rn,∀v ∈ K.

(F) F : Rn → Rm is continuous and ∥F (u)∥ ≤ ηF ,∀u ∈ Rn, ηF > 0.

(G) G : K → Rm is a continuous function such that

(1) G is monotone on K, i.e.

⟨u− v,G(u)−G(v)⟩ ≥ 0,∀u, v ∈ K;

(2) G is coercive on K, i.e. there exists v0 ∈ K such that

lim
v∈K,∥v∥→∞

⟨v − v0, G(v)⟩
∥v∥

= +∞.
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We have the following lemma.

Lemma 3.1. Suppose that the assumptions (F) and (G) are satisfied. Then for each
z ∈ Rm, the solution set SOL(K, z + G(·)) is nonempty, convex and closed. Moreover,
there exists ρ > 0 such that

∥SOL(K, z +G(·))∥ := sup{∥u∥ : u ∈ SOL(K, z +G(·))} ≤ ρ(1 + ∥z∥). (3.1)

We consider the nonautonomous DVI given by (1.1) - (1.3) with following
assumptions:

(H1) A, F , G satisfy (A), (F), (G).

(H2) B : R+ × Rn × K → KV (Rn) is strongly asymptotically autonomous, i.e. there
exists B∗ : (y, u) → B∗(y, u) ⊂ Rn is u.s.c and takes non-empty convex compact
values such that for all compact C ⊂ Rn, D ⊂ Rm, there exists T ≥ 0 satisfying

B(t, y, u) ⊂ B∗(y, u),∀t ≥ T,

where we denote the collection of nonempty, compact, convex, subsets of Rn by
KV (Rn).

Then the converting DI is

x′(t) ∈ Ax(t) +B(t, x(t), SOL(K,F (x(t)) +G(·))) := Φ(t, x(t)), (3.2)
x(0) = ξ, (3.3)

and the strongly limiting DI is

x′(t) ∈ Ax(t) +B∗(x(t), SOL(K,F (x(t)) +G(·))) := Φ∗(x(t)), (3.4)
x(0) = ξ. (3.5)

Theorem 3.1. Suppose that (H1) and (H2) hold. Then for each ξ ∈ Rn, the problem (1.1)
- (1.3) has an absolutely continuous solution.

Corollary 3.1. If B(t, 0, 0) = 0, F (0) = 0 and V̇ ∗
Φ∗(x) < 0 ∀x ∈ Bδ \ {0}, for some

δ > 0, VΦ∗(0) = 0. Then the trivial solution is asymptotically stable.

• Example 1

Let K = C be a cone in R2. Consider the two-dimensional nonautonomous DVI

ẋ(t) = [A(t) +B(t)]x(t) + u(t), (3.6)
C ∋ u(t) ⊥ C(x(t)) +D(u(t)) ∈ C∗, (3.7)

where A(t) =

[
f1(t) f3(t)
−f3(t) f2(t)

]
, fi, B, h are of class L1

loc; C,D are linear operators. In

what follows, we assume
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(i) f1, f2, f3 approach compact intervals I1, I2, I3 with I1, I2 ⊂ (−∞,−δ) for some
δ > 0, by the mean fi(t) ∈ Ii,∀t ≥ T, where T > 0 large enough.

(ii) ∥B(·)∥ ∈ L1 with ∥B(t)∥ → 0 as t→ +∞,

(iii) uTDu ≥ ηD∥u∥2 for some ηD > 0.

We have the following result.

Theorem 3.2. For each initial value x(0) = ξ, there exists a unique solution of
(3.6)-(3.7). If ηDδ > ∥C∥, then the trivial solution is globally asymptotically stable.

Proof. By D is linear and satisfies the coercive property (iii), we have SOL(C; z +D(·))
is a singleton and Lipschitz with the Lipchizian-constant

1

ηD
. Thus, the existence and

uniqueness of a solution of (3.6) - (3.7) follows.
We can denote

SOL(C, z +D(·)) = (ψ1(z), ψ2(z)) ∈ R2.

Then we have SOL(C;C,D)(x) := SOL(C, C(x) +D(·)),∀x ∈ Rn. The limiting
differential inclusion in this case is x′(t) ∈ Φ∗(x(t)), where

Φ∗(x) = Φ∗(x1, x2) = {(α1x1 + α3x2 + ψ1(Cx),−α3x1 + α2x2 + ψ2(Cx)) : αi ∈ Ii}.

Choose V (x) =
1

2
∥x∥2, we have to prove that V̇ ∗(x) < 0, V ∗(x) = 0 for all

x ∈ R2. In fact, we have

⟨V ′(x),Φ∗(x)⟩ = ⟨(x1, x2), (α1x1 + α3x2 + ψ1(Cx),−α3x1 + α2x2 + ψ2(Cx))⟩
= α1x

2
1 + α2x

2
2 + x1ψ1(Cx) + x2ψ2(Cx)

≤ −δ(x21 + x22) + ∥x∥∥ψ(Cx)∥

≤ −δ∥x∥2(1− ∥C∥
ηDδ

) < 0,∀x ̸= 0.

for all x ∈ R2. By the Corollary 3.1, the proof is complete.

• Example 2

We consider a differential variational inequality of the inclusion form as follows

x′(t) = Ax(t) + ξu(t), t > 0 (3.8)
ξ ∈ [f1(t), f2(t)], (3.9)
C ∋ u(t) ⊥ C(x(t)) +D(u(t)) ∈ C∗, (3.10)
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x(0) = x0, (3.11)

where C is a cone in Rm, then we have the converting differential inclusion

x′(t) ∈ Ax(t) + [f1(t), f2(t)]SOL(C;C,D)(x(t)), t > 0.

Suppose that

(iv) A is a linear operator.

(v) f1(·), f2(·) : R+ → R are continuous and satisfying the following properties

f1(t) ↓ a; f2(t) ↑ b as t→ +∞,

for some a < b.

(vi) C,D are assumed as Example 2.

We obtain that the strongly limiting differential inclusion is:

x′(t) ∈ Ax(t) + [a, b]Ψ(Cx(t)), t > 0,

We conclude with the statement on the stability of the solution x = 0.

Theorem 3.3. For each initial value x(0) = ξ, there exists a solution of (3.8)-(3.11). If

η >
a∥C∥
ηD

, then the trivial solution is globally asymptotic stable.
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