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Abstract. To investigate the prewetting state of a Bose-Einstein condensate
(BEC) mixture adsorbed on an optical hard wall at zero temperature, we consider
a system in which condensate 1 coexists with condensate 2 with the chemical
potential held fixed. Using the double parabola approximation (DPA) and solving
the coupled Gross-Pitaevskii equations, we derive an analytical expression for
the thermodynamic contact angle based on Youngs equation. Although the
resulting formula is not algebraically simple, it reveals that complete wetting can
occur before the bulk coexistence point is reached, indicating the presence of a
continuous (second-order) prewetting transition. Our findings are in agreement
with theoretical predictions in the literature and emphasize that the wetting film
thickness grows smoothly without a discontinuous jump. This work provides
useful guidance for the design of experiments aimed at observing wetting
phenomena in Bose-Einstein condensates.
Keywords: Bose-Einstein condensate, Gross-Pitaevskii theory, Prewetting phase
transition, Thermodynamic contact angle.

1. Introduction
Wetting transitions in classical systems have long been understood within the

framework of thermodynamic potentials and surface energies. However, their quantum
analogs, particularly in dilute and weakly interacting Bose-condensed gas mixtures,
remain less well explored. Of special interest is the behavior of BEC mixtures at optical
hard walls, where surface effects play a crucial role in determining the equilibrium
structure of the condensates. In this context, the concept of a thermodynamic contact
angle emerges as a key quantity that characterizes the extent of wetting by one condensate
phase in the presence of another.
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In previous studies [1]-[4], the occurrence of wetting phase transitions in BEC
mixtures confined by an optical wall has been theoretically proposed using the
Gross-Pitaevskii (GP) mean-field framework at zero temperature. The phenomenon of
wetting in binary BoseEinstein condensates (BECs) has been systematically investigated
in a series of studies. Indekeu and Van Schaeybroeck (2004) first demonstrated the
existence of an extraordinary wetting phase diagram, highlighting the transition from
partial to complete wetting characterized by the thermodynamic contact angle [1]. This
work was later extended by Van Schaeybroeck and Indekeu (2015), who provided
a comprehensive analysis of wetting transitions, including critical wetting, first-order
wetting, and prewetting phenomena, and constructed detailed phase diagrams to capture
these behaviors [2]. Based on this foundation, Nguyen (2016) investigated the static
properties of binary BEC mixtures confined by a hard wall within the GP framework,
where the interfacial tension between the condensates and the phase boundary of the
wetting transition were determined [3]. More recently, Pham and Nguyen (2024) extended
this line of research to the prewetting phase, providing a quantitative identification of
the nucleation line and the thickness of the prewetting layer [4], thereby refining the
theoretical characterization of surface phase transitions in such systems.

However, none of the above studies have addressed the variation of the
thermodynamic contact angle within the prewetting phase. Since the contact angle plays
a central role in characterizing wetting and interfacial phenomena, understanding its
behavior in the prewetting phase is essential for completing the theoretical picture of
surface phase transitions in binary BEC mixtures. In this work, we aim to extend previous
investigations by systematically analyzing the evolution of the contact angle along the
prewetting line, thereby providing new insights into the interplay between film thickness,
interfacial tension, and wetting transitions.

2. Content
2.1. Two-component BEC, wetting phase transition, coupled GP

equations with a hard-wall condition

Figure 1 depicts a wetting transition in a two-component BEC, from a partially
wetting configuration, which is defined by a finite thermodynamic contact angle θ (also
known as the Young-Laplace angle), to a regime where θ approaches zero. In this limit,
one component of the mixture, referred to as the wetting phase, forms a macroscopically
thick layer that completely separates the other condensate from the wall, thus signaling
the onset of complete wetting.

Let us denote the surface (free) energy per unit area of condensate j, j = (1, 2), by
γj , and the interfacial tension between the two condensates by γ12. Under conditions of
mechanical equilibrium at the three-phase contact line, Youngs law provides the following
relation [7].
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Figure 1. Illustration of the thermodynamic contact angle θ in the partial (left) and
complete (right) wetting regimes of a binary Bose-Einstein condensate mixture

γ1 = γ2 + γ12 cos θ, (2.1)

where θ represents the thermodynamic contact angle (see Figure1). Suppose that
condensate 2 has a smaller surface free energy than condensate 1, i.e., γ2 < γ1. In this
context, we are interested in the degree to which condensate 2 tends to wet the wall. The
criterion for partial wetting is given by

γ1 < γ2 + γ12, (2.2)

while, in the case of complete wetting, where Youngs law is also referred to Antonovs
law, the system reaches the thermodynamic limit in which

γ1 = γ2 + γ12. (2.3)

On the other hand, when γ1 < γ2, the roles of the two condensates are effectively
reversed, prompting the question of how much condensate 1 tends to dry the wall. The
distinction between wetting and drying in this context is purely conventional. This
terminology is inspired by classical adsorption systems, where fluid 2 represents the liquid
phase and fluid 1 its vapor. In the case of Bose-Einstein condensate mixtures, however,
there is no fundamental physical difference between wetting and drying. Instead, the
terminology serves as a useful indicator that when the contact angle θ > 90◦, the labels
assigned to condensates 1 and 2 switch their physical interpretation.

In this study, we investigate a static system consisting of a two-component
Bose-Einstein condensate in prewetting phase, with condensate 1 always existing in
the bulk phase at a constant density n1. In contrast, condensate 2 is in contact with a
particle reservoir, where the particle density can be adjusted so that the system reaches
bulk phase equilibrium. From the pressure equilibrium condition P1 = P2 = P , with
Pj = gjjn

2
j/2, it is straightforward to obtain the equilibrium density of condensate 2 as
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n2 = n1

√
g11/g22. Here, gij denotes the interaction constant characterizing the pairwise

interaction between particles in condensates i and j, where (i, j) = (1, 2). The condition
for phase separation between the two components is g12 >

√
g11g22 [8]. Before the system

reaches equilibrium, the density of condensate 2 is given by ñ2 = εn2 < n2, with ε being
a dimensionless scaling factor that quantifies the deviation of the density of condensate 2
from its equilibrium value (hereafter simply called the density ratio).

To determine the surface tensions at the wall (wall tensions), we consider the
system in a semi-infinite space bounded by a hard wall at z = 0. This implies that the
system of differential equations describing the condensate wavefunctions (the coupled
Gross-Pitaevskii equations) reduces to a one-dimensional, time-independent system with
respect to the spatial coordinate z

− ~2

2m1

d2Ψ1

dz2
− µ1Ψ1 + g11Ψ

3
1 + g12Ψ

2
2Ψ1 = 0,

− ~2

2m2

d2Ψ2

dz2
− µ2Ψ2 + g22Ψ

3
2 + g12Ψ

2
1Ψ2 = 0. (2.4)

where Ψi (i = 1, 2) denotes the condensate wave function of species i. The hard wall
at z = 0 leads to a Dirichlet boundary condition for the above system of equations
as follows:

Ψ1(0) = Ψ2(0) = Ψ2(∞) = 0,

Ψ1(∞) =
√
n1. (2.5)

Our goal in this work is to solve the coupled differential equations with the
above boundary conditions in order to obtain analytical expressions for the condensate
wavefunctions. These expressions allow us to compute the wall tension as well as the
interfacial tension between the two condensates. Based on these surface and interfacial
tensions, we further determine the thermodynamic contact angle via Youngs law. This
angle characterizes the wetting behavior of one condensate on the wall in the presence of
the other and plays a key role in the equilibrium morphology of the system.

2.2. Analytical expressions for the condensate wave functions

The coupled GP equations (2.4) are derived from the condition that the first
variation of the grand potential Ω vanishes. The grand potential Ω, expanded to the lowest
order in the fluctuation terms around the condensate wavefunction, is given by

Ω =

∫
V

dr

(
2∑

i=1

~2

2mi

|∇Ψi|2 + VGP

)
, (2.6)
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with the GP potential density VGP taking the form

VGP =
2∑

i=1

(
−µi|Ψi|2 +

gii
2
|Ψi|4

)
+ g12Ψ

2
1Ψ

2
2 (2.7)

The GP potential density in Eq. (2.6) consists of three types of contributions. The
terms −µi|Ψi|2 represent the energy associated with the chemical potential µi of each
condensate component, where in the mean-field approximation one has µi = giini. The
terms gii|Ψi|4/2 account for the intraspecies interaction energy, with the factor of 1/2

preventing double counting of particle pairs. Finally, the term g12|Ψ1|2|Ψ2|2 describes the
interspecies interaction energy between the two condensates.

It is evident that the quartic potential density in equation (2.7) leads to the
nonlinear differential system (2.4), which does not admit exact analytical solutions. The
approximation of a double-well potential by piecewise parabolic functions is mainly
motivated by the advantage of working with segment-wise harmonic potentials. Such
potentials make it possible to solve the equations of motion exactly in terms of simple
functions with clear physical interpretation. Following this approach, we expand the
quartic potential in (2.7) around its local minima, which correspond to the maxima of
the condensate wavefunctions. Consequently, the GP potential density is replaced by a
harmonic potential density as follows:

VDPA =

−P + (g12n1 − µ2) |Ψ2|2 + 2µ1

(√
n1 − |Ψ1|

)2
, if z > L,

−ε2P + (g12n2 − µ1) |Ψ1|2 + 2µ2

(√
εn2 − |Ψ2|

)2
, if z < L,

(2.8)

where P is the equilibrium pressure. The approximation method we employ is known as
the double-parabola approximation (DPA), which has been previously applied in several
studies on static two-component BEC systems [2]-[6], as well as on three-component
BEC systems [9]. The DPA is not a physically motivated approximation; rather, it is a
purely mathematical simplification aimed at obtaining approximate analytical solutions
of the GP equations. Previous studies have shown that although the wavefunction profiles
derived from the DPA differ noticeably from those obtained numerically within the GP
theory, the DPA still appears to capture the qualitatively correct interfacial structure. In
particular, it provides a reasonable description of how the wavefunctions vary with the
coupling constants.

By substituting the potential energy density in the grand potential (2.6) with the
expression given in (2.8), and performing the variational procedure in the same manner
as used to derive the system of differential equations (2.4), we obtain the following
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approximate equations describing the condensate wavefunctions within the GP theory:

− ~2

2m1

d2Ψ1

dz2
+ 2µ1 (

√
n1 −Ψ1) = 0, (2.9)

− ~2

2m2

d2Ψ2

dz2
+ (g12n1 − µ2) Ψ2 = 0, if z > L, (2.10)

and

− ~2

2m1

d2Ψ1

dz2
+ (g12n2 − µ1) Ψ1 = 0, (2.11)

− ~2

2m2

d2Ψ2

dz2
+ 2µ2 (

√
εn2 −Ψ2) = 0, if z < L. (2.12)

Analytical solutions of Eqs. (2.9)-(2.12) take the following form:

Ψ1(z)
√
n1

=


1− A1 exp

(
−
√

4m1g11n1

~
z

)
, if z > L

2A2 sinh

(√
2m1g11n1(εK − 1)

~
z

)
, if z < L,

(2.13)

and

Ψ2(z)
√
n2

=


B1 exp

(
−
√

2m2g22n2(K − ε)
~

z

)
, if z > L,

√
ε

[
1− exp

(
−
√

4εm2g22n2

~
z

)]
− 2B2 sinh

(√
4εm2g22n2

~
z

)
, if z < L,

(2.14)

where

K =
g12n2

g11n1

=
g12n1

g22n2

=
g12√
g11g22

(2.15)

is known as the relative interaction parameter. As seen in Eqs. (2.13) and (2.14), it is
convenient to introduce the auxiliary length scales

ξi =
~

2migiini

, with i = (1, 2). (2.16)

From the continuity conditions of the wavefunctions and their first derivative at z = L,
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the integration constants A1, A2, B1, B2 can be readily obtained as follows:

A1 =

√
εK − 1 exp

(√
2L/ξ1

)
√
εK − 1 +

√
2 tanh

(√
εK − 1L/ξ1

) ,
A2 =

sech
(√

εK − 1L/ξ1
)√

2(εK − 1) + 2 tanh
(√

εK − 1L/ξ1
) , (2.17)

B1 =

√
2ε exp

(√
K − εL/ξ2

) [
1− sech

(√
2εL/ξ2

)]
√

2ε+
√
K − ε tanh

(√
2εL/ξ2

) ,

B2 =

√
ε exp

(
−
√

2εL/ξ2
)

sech
(√

2εL/ξ2
) {√

2ε+
√
K − ε

[
exp

(√
2εL/ξ2

)
− 1
]}

2
√

2ε+ 2
√
K − ε tanh

(√
2εL/ξ2

) .

In the above expressions, L denotes the thickness of the prewetting layer. It is determined
by the condition that the wavefunctions profiles intersect at z = L, i.e., Ψ1(L) = Ψ2(L).
Near the bulk two-phase coexistence, the thickness of the prewetting layer is obtained by
solving this condition, which gives the following expression [4]

L =
ξ1

2
√
εK − 1

ln

(√
K − ε+

√
2ε (1−

√
ε) + ε

√
εK − 1√

K − ε+
√

2ε (1−
√
ε)− ε

√
εK − 1

)
. (2.18)

2.3. Interfacial tension and thermodynamic contact angle

Since the system under consideration is semi-infinite with translational symmetry
in the x-y plane, where the atoms are confined by a hard wall at z = 0, the grand potential
(2.6) can be rewritten as

Ω = A

∫ ∞
0

dz

[
2∑

i=1

~2

2mi

(
dΨi

dz

)2

+ VGP

]
, (2.19)

where A is the area of the x-y surface.
Once the condensate wavefunctions have been determined, the next step is to

compute the surface and interfacial tensions via the excess grand potential of the system.
To compute the grand potential (2.19), we adopt a mechanical analogy similar to that
presented in Ref. [10]. In this approach, the system of equations (2.4) takes the form of
Newtons second law for a particle moving in a two-dimensional plane under the influence
of a potential force. In this analogy, the mechanical energy of the particle is a conserved
quantity and is given by

2∑
i=1

~2

2mi

(
dΨi

dz

)2

− VGP =
g11n

2
1

2
= P. (2.20)
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By combining equations (2.19) and (2.20), we rewrite the grand potential of the system
in the form

Ω = A

∫ ∞
0

dz
2∑

i=1

~2

mi

(
dΨi

dz

)2

− PV. (2.21)

On the right-hand side of Eq. (2.21), Ωbulk = −PV represents the bulk grand potential.
The excess grand potential per unit area is referred to as the interfacial tension; therefore,
we obtain

γ12 =
Ω− Ωbulk

A
=

∫ ∞
0

dz

2∑
i=1

~2

mi

(
dΨi

dz

)2

. (2.22)

Substituting (2.13) and (2.14) into (2.22) we obtain

γ12 = P (Mξ1 +Nξ2), (2.23)

in which

M = 2
√

2A2
1 exp

(
−2
√

2L/ξ1

)
+ 16B2

(
B2 +

√
ε
)
εL/ξ1

+ 4A2
2

[
(εK − 1)L/ξ1 +

√
εK − 1 sinh

(
2
√
εK − 1L/ξ1

)]
, (2.24)

N = 2B2
1

√
K − ε exp

(
−2
√
K − εL/ξ2

)
+ 2
√

2εB2
2

[
exp

(
2
√

2εL/ξ2

)
− 1
]

+ 2
√

2ε
(
B2 +

√
ε
)2 [

1− exp
(
−2
√

2εL/ξ2

)]
. (2.25)

It can be readily confirmed that, as shown in Ref.[3], at bulk two-phase coexistence (ε =

1), the coefficients M and N take the form

M = 2
√

2

√
K − 1√

2 +
√
K − 1

, and N =
4
(
1 +
√

2
√
K − 1

)
√

2 +
√
K − 1

, (2.26)

which subsequently leads to

γ12 = 2
√

2

√
K − 1√

2 +
√
K − 1

P (ξ1 + ξ2) + 2
√

2Pξ2. (2.27)

Next, we determine the surface tension of a pure condensate j at the hard wall. For
this purpose, we consider the half-space z > 0 filled exclusively with condensate j. In
this case, Eqs.(2.9) and(2.12), combined with the hard-wall Dirichlet boundary condition
at z = 0, yield the corresponding wavefunctions as

Ψ1(z) =
√
n1

[
1− exp

(
−
√

2z/ξ1

)]
, (2.28)

Ψ2(z) =
√
εn2

[
1− exp

(
−
√

2εz/ξ2

)]
. (2.29)

42



The thermodynamic contact angle in the prewetting phase of a binary bose-einstein...

The surface tension γi,pure is obtained by substituting Eqs. (2.28) and (2.29) and into Eq.
(2.22). It can be readily seen that it scales linearly with ξi as follows:

γ1,pure = 2
√

2Pξ1, and γ2,pure = 2
√

2ε3/2Pξ2. (2.30)

Within the grand canonical ensemble, the excess grand potential per unit area has a
unique definition up to an additive constant. In our setup, condensate 1 occupies the region
above the interface, while condensate 2 is adsorbed onto the hard wall. Consequently, pure
phase 1 dominates as z →∞. This excess quantity is calculated by taking the total grand
potential Ω, subtracting the contribution from a half-space (z > 0) entirely occupied by
phase 1, and then dividing the result by the surface area parallel to the wall. Using the
coupled GP equations (2.4), this leads to

γ1 = lim
L→∞

[
−
∫ L

0

dz
(g11

2
Ψ4

1 +
g22
2

Ψ4
2 + g12Ψ

2
1Ψ

2
2

)
+ P

∫ L

0

dz

]
(2.31)

From Eq. (2.31), one can derive a relation between the surface tension of condensate 1
and the surface tensions in the pure phases,

γ1 = γ1,pure + γ2,pure − lim
L→∞

(∫ L

0

g12Ψ
2
1Ψ

2
2dz

)
. (2.32)

Near the bulk two-phase coexistence, the overlap term on the right-hand side of Eq. (21)
is much smaller than the other two terms. Therefore, the surface tension of condensate 1
can be approximated as

γ1 ≈ γ1,pure + γ2,pure. (2.33)

Substituting (2.23) and (2.33) into (2.1), we obtain the cosine of the thermodynamic
contact angle,

cos θ =
2
√

2

M +Nξ2/ξ1
. (2.34)

One can see that, in a bulk two-phase coexistence state with a stable contact angle θ,
the value of cos θ can be obtained by substituting M and N from Eq. (2.26) into the
right-hand side of the above equation. Specifically,

cos θ =

[ √
K − 1√

2 +
√
K − 1

(1 + ξ2/ξ1) + ξ2/ξ1

]−1
. (2.35)

Assuming that complete wetting is achieved at the end of the prewetting transition, this
leads to a relation for K in terms of ξ1 and ξ2 as follows:

K = 1 +
1

2
(ξ1/ξ2 − 1)2 . (2.36)
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The curve representing the function K(ξ2/ξ1), as shown in Figure 2, is referred to as
the wetting phase boundary. This result has already been reported in Refs. [3] and [15].
However, what is important here is that it provides insight into suitable values of the
relative interaction parameter K as a function of the ratio ξ2/ξ1, enabling the observation
of variations in the contact angle throughout the prewetting phase, before it vanishes as
the density ratio ε increases toward a certain value less than unity.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

ξ2/ξ1

1/
K

Complete wetting

Partial wetting

Figure 2. Wetting phase boundary in a binary BEC mixture adsorbed on a hard wall

Note that in our study, the contact angle varies as a function of the density ratio ε,
and this dependence satisfies Eq. (2.34). Accordingly, for the case ξ1 = 2ξ2, Eq. (2.36)
indicates that a prewetting transition occurs when the relative interaction parameter is
chosen as K = 1.3. We would like to emphasize that the parameter K can be fully
controlled in experiments via the Feshbach resonance technique [11]-[14].

As an illustration of Eq.(2.34), we plot the cosine of the thermodynamic contact
angle as a function of the density ratio ε for the case ξ1 = 2ξ2 and K = 1.3 in Figure3. It
can be seen that complete wetting is achieved before the bulk coexistence point is reached.
In other words, the contact angle vanishes already at a density ratio ε < 1, specifically
at ε = 0.976 in this figure, indicating the formation of a prewetting film with a finite
thickness in the metastable regime. The thickness of this film then increases continuously
and reaches macroscopic thickness as ε approaches 1. This behavior is consistent with a
continuous (second-order) prewetting transition.

It is worth noting that although cos θ approaches unity, this approach is not
tangential. At first glance, such behavior may appear inconsistent with the typical
characteristics of a second-order (continuous) wetting transition, in which cos θ → 1

usually occurs smoothly and tangentially. However, as predicted in Ref. [1], this is
not necessarily the case in systems where the interfacial potential barrier is absent and
the grand potential exhibits near-degeneracy across a range of film thicknesses. In such
cases, all intermediate film configurations are energetically comparable, allowing the
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wetting film to grow continuously without requiring a vanishing slope in cos θ. Therefore,
despite the finite-angle intersection with the line cos θ = 1, the prewetting transition
remains second-order, characterized by the absence of a first-order jump in adsorption or
film thickness.

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00

0.94

0.95

0.96

0.97

0.98

0.99

1.00

ϵ

co
s
θ

Figure 3. The cosine of the thermodynamic contact angle is plotted versus the density
ratio ε for ξ1 = 2ξ2 and K = 1.3

3. Conclusions
In the foregoing sections, we have investigated the behavior of the thermodynamic

contact angle in a binary Bose-Einstein condensate mixture adsorbed on a hard wall.
By applying the double-parabola approximation, we derived an analytical expression
for the thermodynamic contact angle. However, this expression remains algebraically
intricate and cannot be reduced to a compact mathematical form. Encouragingly, our
findings are in good agreement with the theoretical perspective presented in Ref. [1].
The prewetting transition exhibits a critical (second-order) nature, characterized by the
absence of a discontinuous jump in film thickness between microscopic and macroscopic
values. This is because the completely wetting state is established before the system
reaches the bulk two-phase coexistence point. We hope that these results will offer
valuable insights for experimentalists working with Bose-Einstein condensates to design
and carry out potential verification experiments.

REFERENCES

[1] Indekeu JO & Van Schaeybroeck B, (2004). Extraordinary Wetting Phase Diagram
for Mixtures of Bose-Einstein Condensates. Physical Review Letters, 93, 210402.

[2] Van Schaeybroeck B & Indekeu JO, (2015). Critical wetting, first-order wetting,
and prewetting phase transitions in binary mixtures of Bose-Einstein condensates.
Physical Review A, 91, 013626.

45



Pham DT∗ & Nguyen VT

[3] Nguyen VT, (2016). Static properties of Bose-Einstein condensate mixtures in
semi-infinite space. Physics Letters A, 380, 2920-2924.

[4] Pham DT & Nguyen VT, (2024). Static Properties of Prewetting Phase in Binary
Mixtures of Bose-Einstein Condensates. International Journal of Theoretical
Physics, 63(12), 315.

[5] Lo VT, Tran TTH, Vu VH, Chu GB, Nguyen QH, Tran KV, Dung LN, Le TL, Hoa
DT, Nguyen TK & Pham TS, (2025). Interfaces movement in the segregated binary
mixture of two weakly interacting Bose-Einstein condensates. Annals of Physics,
475, 169947.

[6] Pham DT & Dang TH, (2025). The interface position of a Bose-Einstein condensate
mixture restricted by a hard wall in the double-parabola approximation. Dalat
University Journal of Science, 15(3S), 33-43.

[7] Rowlinson JS & Widom B, (2013). Molecular Theory of Capillarity. Courier
Corporation.

[8] Ao P & Chui ST, (1998). Binary Bose-Einstein condensate mixtures in weakly and
strongly segregated phases. Physical Review A, 58(6), 4836-4840.

[9] Indekeu JO, Nguyen VT & Jonas Berx, (2025). Three-component Bose-Einstein
condensates and wetting without walls. Physical Review A, 111, 043320.

[10] Pham DT, Tran KV & Nguyen VT, (2025). Phenomenological analogy between
Gross-Pitaveskii theory for Bose-Einstein condensate mixtures in infinite space and
Classical mechanics. HNUE Journal of science: Natural Science, 70(1), 25-35.

[11] Inouye S, Andrews MR, Stenger J, Miesner HJ, Stamper-Kurn DM & Ketterle W,
(1998). Observation of Feshbach resonances in a Bose-Einstein condensate. Nature,
392(6672), 151-154.

[12] Stan CA, Zwierlein MW, Schunck CH, Raupach SMF & Ketterle W, (2004).
Observation of Feshbach resonances between two different atomic species. Physical
Review Letters, 93(14), 143001.

[13] Papp SB & Wieman CE, (2006). Observation of Heteronuclear Feshbach Molecules
from a Rb 85-Rb 87 Gas. Physical Review Letters, 97(18), 180404.

[14] Chin C, Grimm R, Julienne P & Tiesinga E, (2010). Feshbach resonances in
ultracold gases. Reviews of Modern Physics, 82(2), 1225-1286.

[15] Indekeu JO, Lin CY, Nguyen VT, Van Schaeybroeck B & Tran HP, (2015). Static
interfacial properties of Bose-Einstein-condensate mixtures. Physical Review A, 91,
033615.

46


