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Abstract. We study bivariate polynomial interpolation based on line integrals
over line segments connecting two points on two fixed straight lines in the
plane. We provide a characterization of the sets of segments that uniquely
determine the interpolation polynomial. We also construct illustrative examples
for specific cases.
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1. Introduction

Let P4(RR?) be the vector space of polynomials of degree at most d in R?,
P4(R?) = spang {z™y" : 0 < m +n < d}.
We also consider the space of polynomials
Q4(R?) = spang{z™y" : 0 <n < m < d}.

The dimensions of Py(R?) and Q,4(R?) are both equal to Ny := (d + 1)(d + 2)/2.

A subset A = {xy,...,xy,} of R? that consists of N, distinct points is said to
be unisolvent for P;(R?) if, for every function f defined on A, there exists a unique
P € P4(R?) such that f(x;z) = P(xy) for k = 1,..., N;. This polynomial is called
the Lagrange interpolation polynomial of f at A and is denoted by L[A; f]. Unlike
the univariate Lagrange interpolation, the bivariate Lagrange interpolation is not always
unisolvent. Moreover, it is difficult to check whether a particular set of N, distinct points
in R? is unisolvent. In the literature, many types of unisolvent sets were constructed
(see [1]-[4])

In some practical problems, we have information about a function coming as a set
of functionals instead of point evaluations. For example, in tomography, the data consists
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of values of line integrals over segments. These values are called Radon projections.
More precisely, let I be a line segment in the plane and f € L'(I). The Radon projection
R(I; f) is the line integral of f over I:

R(:f) = / £, y)ds. (L1)

A fundamental problem in this context is the determination of a polynomial from a finite
set of its Radon projections. Interpolation theorems serve as a basis for the approximate
reconstruction of functions from such projections. Due to the significance of these
reconstruction methods in various applications, they have been the subject of extensive
study by numerous researchers (see [5]-[7])
We now state an interpolation problem based on Radon projections.

Problem 1. Let F, be the space P;(R?) or Q4(R?). Determine a set of line segments
Z={Iy:k=1,..., Ny} such that, for arbitrary real numbers 1, ...,7Vn,, there exists
a unique polynomial P € F; such that

R([[.ﬁp):’yk, ]{?:1,...7Nd.

We say 1 regular is F if it solves the problem.
LetZ = {I; : k = 1,..., Ny} be regular for 7, and let f € (¢, L'(I}). Let
R[F4,Z; f] be the unique polynomial in F; such that

The polynomial R[Fy, Z; f] is a type of mean-value interpolation polynomial of f.

A natural approach involves selecting line segments that correspond to chords of
the unit circle and F; = P,4(R?). In [8], the authors constructed a regular set of chords
partitioned into d+ 1 groups, with the k-th group consisting of k parallel chords. Bojanov
and Xu in [9] demonstrated that a collection of /V; Radon projections, taken over 2[d/2]+1
parallel chords in each of the 2[(d + 1)/2] + 1 equidistant directions, forms a regular set
provided that certain matrices, determined by the distances from the origin to the chords,
are all non-singular.

A generalization of Problem 1 was studied in [10], where we considered the
interpolation problem in R". Here, the interpolation conditions are surface integrals over
the convex hull of the intersection points of a hyperplane with the coordinate axes. We
established a characterization of the hyperplanes such that the interpolation problem has a
unique solution. In particular, for n = 2, the interpolation conditions are the line integrals
over line segments connecting two points on the horizontal and vertical axes. More
precisely, we showed that the set of segments connecting (a;, 0) and (0, b;), with a;b; # 0,
1 <4 < Ny, is regular for P4(R?) if and only if the set of points {(a;, b;) : 1 < i < Ny}
is unisolvent for P4(R?).
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In this paper, we are interested in characterizing the regular sets of line segments
where the endpoints lie on two straight lines in R?. We consider two distinct cases:
intersecting lines and parallel lines. Since the case of two perpendicular lines was treated
in [10] (see the above discussion), we only focus on two non-perpendicular lines. Here,
the line segment [; is determined by two parameters a, and by, which form a point
(ag,br) € R? In case of two intersecting lines, the main result of Section 2 shows
that Z is regular for Py(R?) if and only if A = {(ay, ;) : 1 < k < Ny} is unisolvent for
P4(R?). Next, we treat the case of parallel lines. We prove in Section 3 that Z is regular
for Q4(R?) if and only if A = {(az,bx) : 1 < k < N} is unisolvent for Py(R?). We
also provide an example in Section 3 showing that the assertion no longer holds when
Q4(R?) is replaced by P,;(R?). Hence, it can be said that the results obtained in this
paper complete the theory of polynomial interpolation based on line integrals joining
two points on two fixed straight lines in the plane. We also establish relations between
the interpolation polynomial induced from Z and the Lagrange interpolation polynomial
at A.

Notations and conventions. The set of all nonnegative integers (resp. positive
integers) is denoted by N (resp. Z*). Throughout the paper, we always assume that d is a
positive integer and 4, j, k, m, n are natural numbers. We denote by (), the Pochhammer
symbol defined by (z); = z(z+1)--- (r—k+1) for k > 1 and (z)y = 1. The monomial
x™y™ with m, n € N is denoted by p,, ,(x,y).

2. Regular interpolation schemes corresponding to two
intersecting lines

We first consider line segments with endpoints lying on two intersecting lines which
are not perpendicular. Without loss of generality, we may assume that the two lines are
given by y = 0 and y = ax with o # 0. Let [,(a; b) be the line segment joining (a, 0)
and (b, ab) with (a, b) # (0,0) (see Figure 1).

abt----

Figure 1. The line segment [,(a;b)

It is parameterized by x =a+ (b—a)t, y=abt, 0<t<1.
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Lemma 2.1. If p,, ,,(z,y) = 2™y" withm,n € N, then

(m — k+1) bk (b —

a)k

R(1n(a;0); pmn) = "/ (b — a)? ab2

where () is the Pochhammer symbol.

Proof. Using the above paramaterization of /,(a; b) we have

R(Ia(a;0);pmn) = | Pmn(a+ (b—a)t,abt)\/(b— a)* + (ab)2dt

(a4 (b—a)t)” (abt)"\/(b— a)? + (ab)2dt

|
/

1

= a"b"\/(b—a)? + (ab)? /t” (a+ (b—a)t)"dt.

0
We need to calculate the last integral. Let us set

1

/t”a—i— (b —a)t)"dt.

0

The integration by parts enables us to write the following recurrence relation

1
b m(b— a) m—1
= - ! b—a)t)" dt
u(n, m) n+1 n+1 / (a+(b—a)t)
0
b m(b— a)
= — 1,m—1).
n+1 n+1 wn+1lm-1)
Using the above relation repeatedly we obtain
i (m —k+ 1)b™ % — a)*
(1 + 1k '

k=0

Consequently,

R(1a(a;0); pmn) = a”\/(b —a)? + (ab)? Z

=0 (n+1)kn

The proof is completed.
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Lemma 2.2. Let d be a positive integer. Then the set of homogeneous polynomials

{2

forms a basis for Hq(R?), the space of homogeneous polynomials of degree d in R>.

(m —k+ 1)py?*(y — )"
d m+1)k+1

OMS

;ogmgd} @2.1)

Proof. We see that the set {y**(y — z)* : 0 < k < d} forms a basis for H,(R?).
The desired assertion follows directly from the fact that the matrix of coefficients

corresponding to the set of polynomials in (2.1) and the above basis has non-zero
determinant,

ﬁ 0 0 0 0
i 1 0 0 0
d d(d+1)
1 2 1-2 0 0

d—1 (d—1)d (d—1)d(d+1)
1 —d (d—1)d —(d—2)(d—-1)d (—1)dd!

1 2! 3! 4! (d+1)!]
The proof is completed. []

Utilizing the above lemma, we immediately obtain the following result.

Lemma 2.3. Let d be a positive integer. Then, the set of bivariate polynomials

m m k—l— ) m+n—k(y_x)k
: <

forms a basis for Py(R?).

Theorem 2.1. Let o # 0. Then the set of segments T = {1,(a;; b;) : (a;,b;) # (0,0), 1 <
i < Ny} is regular for Py(R?) if and only if the set of points A = {(a;,b;) : 1 <i < Ny}
is unisolvent for Py(R?).

Proof. Using Lemma 2.1 we get

R(Ia(a;b); ) = "/ (b~ a)? + (ab)2qm.n(a, b). (2.2)

We first assume that A is unisolvent for Py(R?). Let P € P4(R?) such that
R(I(ab); P) =0, Y1<i< Ny 2.3)
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We need to show that P = 0. We write P(z,y) = Zm+n§d CmnPm.n (2, y). From (2.2)
we can write

R(Ia(ai; b); P) = /(b — a;)? 2 D 0 CmnGma(ai,by).

m+n<d

We define P(z,y) = > min<d @ Cmndmn(7,y). Then P € Py4(R?) and

R(Ia(a:i;b;); P) = /(b — a;)? + (ab;)2Pla;, b;), 1<i< Ny (2.4)

Combining (2.3) and (2.4) we obtain ﬁ(ai, b;) = 0 for 1 < i < N,. The hypothesis that
A is unisolvent gives P = 0. Since {¢,,, : m +n < d} is a basis for P;(R?), we have
Cmn = 0form +n < d. Hence P = 0.

Conversely, assume that Z is regular. Let ) € Pd(Rz) such that Q(a;, b;) = 0 for

1 <1 < N, We write (Q = megd m.nGm.n and define Q Zm+n<d e Pmn- By the
above arguments we get

R(Ia(ai;b:): Q) = /(b — a;)® + (ab;)?Q(as, b)), 1<1i< Ny

Hence R(1,(a;; b;); Q) =0, 1< 1< N, Consequently, @ = 0, because Z is regular
for P4(R?). This forces d,,,, = 0 for m + n < d, and hence Q = 0. The proof is

completed. [
Proposition 2.1. Let o # 0. Let T = {I,(a;;b;) : (a;,b;) # (0, ) <i< Nd} be
regular for P4(R?) and A = {(a;,b;) : 1 < i < Ng}. Let f € (v L' (In(as; b)) and

f*: A — Rdefine by

R(]a(az’;bi)§f) C1<i<
V(b = a;)? + (ab;)?
Let R[Pd<R2)aI§ f= > CmnPmn and LA f = > Cfn,ann,n'

m+n<d m+n<d
Then cy,, = a"cpp form+n < d.

fr(ai, bi) =

Proof. Lemma 2.1 gives

R(]a(ai;bi);f) = R(Ia(ai;bz‘)§R[Pd(R2);I;f]): Z Cm,nRUa(az‘;bi);Pm,n)

m+n<d
- \/(b _az Z Oécmn‘]mn alab)
m+n<d
It follows that
Z ancm,an,n(aia bz) = f*(aia bz)a 1 S { S Nd7 (25)

m4+n<d
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The polynomial ) tn<d " CmnGm,n belonging the space Py (R?) interpolates f* at A.
By the uniqueness of Lagrange interpolation, we have

n
E @ Cmnldmn-
m+n<d

The desired relation follows directly from the last equality. The proof is completed. [

3. Regular interpolation schemes corresponding to two parallel
lines

We now consider line segments with endpoints located on two parallel lines. There
is no loss of generality in assuming the two lines are y = 0 and y = 8 where 3 # 0. Let
J(a; b) denote the line segment connecting the points (a,0) and (b, 3) (see Figure 2).

y
B y=7p

i Jp(a;b)
0 (3 a x

Figure 2. The line segment Js(a;b)
This segment can be parameterized by z = a+ (b—a)t, y=p0t, 0<t<1.
Lemma 3.1. If p,,, ,.(z,y) = 2™y" withm,n € N, then

R(J5(a:): p) = 6 ¢—+522 =k Dot

n + 1)k+1

where () is the Pochhammer symbol.

Proof. We can write

1
R(Ja(a;0); pmn) = /pmn a+ (b—a)t ,5t)\/(b—a)2+ﬁ2dt

= /a+ (b—a)t)" (8t)" /(b — a)? + B2t

1

= B" (b—a)2+ﬁ2/t”(a+(b—a)t)mdt.

0
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1
Using the computation of the integral [ ¢" (a +(b— a)t)mdt in Lemma 2.1, we obtain the
0
desired relation. [

Lemma 3.2. Let m be a positive integer. Then the set of homogeneous polynomials

~ (=D m —k+ 1)y F(y — )k
{}: W+U;4 .ogngnﬁ 3.1)

k=0
forms a basis for H,,(R?), the space of homogeneous polynomials of degree m in R>.
Proof. As in the proof of Lemma 2.2, since{y™ *(y — z)* : 0 < k < m} is a basis

for H,,(R?), it suffices to show that the matrix of coefficients corresponding to the set of
polynomials in (3.1) and the above basis is invertible

1 12 123 12 (m+1)
1 —m (m—1)m o (=1)™1-2---m
2 23 ( 2-33 (2-:135.-(?;2)
1 —-m m—1)m —1)m1.2.--m
M= 3 34 345 o 3-4--(m+3)
1. *‘m (m;l)m ) (*1)m.1-2---m
Lm+1  (m+1)(m+2)  (m+1)(m+2)(m+3) (m+1)(m+2)---(2m+1) 4

m(m+1)

It is easily check that det M = (—1)" =  [[}"(m —k + 1), [[;-, k! det H, where

1 1 1 _1

1! 2! 3! (m+1)!

1 1 1 _1

21 31 a1 (m=+2)!

1 1 1 _1
H = 31 I 5l (m+3)!

1 1 1 o 1

| (m4+1)! (m42)!  (m+3)! (2m+1)! |

We see that H is a Hankel matrix. The determinant of this matrix can be found in the
literature. To make it easier for readers to follow, we give a detailed computation. For

each 1 < 53 < m + 1, we factor out m from the j-th column and get
1 ! m—+1
YR N MUES T ol
szl (m+7)! (k47— 1) kj=1
Note that (,gfjji;, = fms1-x(m + j), where fi(z) =2(z —1)---(r —k+1)fork > 1
and fo(x) = 1. Hence
det H ! det [/ (—%ﬂmﬂ
e = et | frri—r(m
[ m g L
m(m+1)
(=)= m+1
= det [ _1(m + } .
Mmoo
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We will reduce the last determinant to the Vandermonde determinant. Indeed, for any set
{z1,...,Zms1} of m + 1 real numbers, since fi(z) is a monic polynomial of degree k,
we can use the row operation of matrix to obtain

m+1 m+1
det fua(ap)], — =det|gn(e)] =[] (-,
1<k<j<m+1
where gi.(x) = z¥ for k = 0, ..., m. It follows that
. m+1 . . - .'
det [ fialm+ )] = ] Mm+d—tmem)= [ G-m=][2
1<k<j<m+1 1<k<j<m+1 =1
m(m+1) m o
Hence det H = & T m HZ)'”'. Combining the above computations, we obtain
det M = i O(gmﬁ&’l 1;[), 17 Consequently, M is invertible, and the proof is
completed. [

Applying the above lemma, we get the following result.

Lemma 3.3. Let d be a positive integer. Then the set of polynomials

k

S (m — k‘ + Dy My — o)
forms a basis for Py(R?).

Using similar arguments presented in the proof of Theorem 2.1 and Proposition 2.1,
we get the following results.

Theorem 3.1. Let § # 0. Then the set of segments
is regular for Q4(R?) if and only if the set of points
unisolvent for Py(IR?).

= Q
I

Proof. In view of Lemma 3.1 we have
R(J5(a;0); pmn) = 8"V (b — a)? + B*ryn(a,b). (3.3)
We first assume that A is unisolvent for P, (R?). Let P € Q,4(R?) satisfying the condition
R(Jalai;b;); P) =0, 1<i< Ny (3.4)

We need to show that P = 0. Wring P(x,y) = >, <;n<q CmnPm.n(2,y) and using (3.3)
we can write

R(Jp(ai;b:); P) = /(b —ai)? + 32 Y B Crnrmn(ai, by).

0<n<m<d
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Let us set P(z,y) = > 0<n<m<d B"CmnTmn(T,y). Observe that P € Py4(R?) and

R(Js(ai; b;); P) = /(b — a;)% + B2P(a;,b;), 1<i< N, (3.5)

Combining (3.4) and (3.5) we obtain ]3(% b;) = 0 for 1 <i < Njy. Since A is unisolvent
for Py(R?), we get P = 0. It follows that Cmn = 0for 0 < n < m < d because
{rmn:0<n<m <d}is abasis for Pz(R?). This forces P = 0.

Conversely, assume that 7 is regular for Q4(R?). Let Q@ € P4(R?) such that
Q(ai,b;)) =0, 1 <17 < Ny Since the set {r,,,, : 0 < n < m < d} form a basis for
Pa(R?), we can write Q = >, <y dmnTmn- Let us define Q= > 0<n<m<d d;”—,;"pm,n.

We have @ € Q,. By the above arguments, we get
R(Js(ai:0:); Q) = V(b — @) + BQ(as,b), 1<i< Ny

~ -~

It follows that R(Jg(a;0;); Q) =0, 1 < i < Ny. Consequently, Q = 0, because 7 is
regular for Q4(R?). Hence, d,,,, = 0 for 0 < n < m < d. This forces @ = 0, and the
proof is completed. O
Proposition 3.1. Let 8 # 0. Let 7 = {Js(a; b;) : 1 < i < Ny} be regular for Q4(R?)
and A = {(a;,b;) : 1 <i < Ng}. Let f € ("~ L'(Js(as; b;)) and f* : A — R define by

R (Js(ai; b:); f)

* ag;, bz = s 1 < 1 < Ny.
Frla) V(b — a;)? + 32 ’
Let R[Q4(R?),T;fl= > ConPmn and L[A; f* =3 ¢ Tmn.
0<n<m<d 0<n<m<d

Thenc;, ,, = B"Cmyn for 0 <n <m < d.
Proof. From Lemma 3.1 we can write

R(Jﬁ(az‘;bz‘);f) = R(J,B(az‘;bz‘)§R[Qd(R2),j;f]): Z Cm,nR(Jﬂ(az‘;bi);Pm,n)

0<n<m<d

= V(b — a;)? + B2 Z B" CmnTmn(ai, b;).

0<n<m<d

It follows that
Z ﬁncm,nrm,n<ai7 bz) = f*<ai7 bl)a 1 S { S Nd7 (36)

0<n<m<d

Observe that Zogngmg 4 B CmnTm.n 18 @ polynomial of degree at most d in R2. Relation
(3.6) induces that this polynomial interpolates f* at A. By the uniqueness of Lagrange
interpolation, we have
LA f= ) B CnnTmn.
0<n<m<d
Since {7y, 1 0 < n < m < d} forms a basis for Py(R?), we get ¢}, ,, = ", for
0<n<m<d. ]
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Remark 3.1. The space of polynomial Qq(R?) arises naturally from Lemma 3.1.
Therefore, it is reasonable to work with Q4(R?) instead of Py(RY). The problem of
characterizing the regularity of J corresponding to Py(R?) remains open.

4. Examples

In this section, we compute the interpolation polynomials constructed in the two
preceding sections. While Propositions 2.1 and 3.1 provide explicit formulas for these
polynomials, our examples focus on the case d = 1, which allows for direct computation.

Example 4.1. We consider three non-collinear points a = (1,1), b = (2,1) and ¢ =
(3,2) in the plane. It is well-known that A = {a, b, c} is unisolvent for P;(R?). Let us
take o = 2. By Theorem 2.1, the set of three line segments

T ={I(1;1),12(2;1), I»(3;2)}

is regular for Py (R?).
Y
&
y
N
4 7777777 I
1 y
|
|
|
21--- ,\} 15(3;2) 1 y=1
- <} =N\ N\
! . e
SN SRS
<N )
O 1 2 3 = O 1 2 3 T

Figure 3. Three line segments in 7 (left) and 7 (right)
Assume that we have the information of a function f given by
R(L(L1); f) =m, RU22:1);f) =2, R((3:2); f) =s.
We need to compute the interpolation polynomial
P(2,y) == RIPy(R?), T; fl(, ) = u+ va + wy.
Direct computation gives
R(I:(1;1); P) = uR(I5(1;1); 1) + vR(I2(1;1); 2) + wR(I2(1;1);y) = 2u + 2v + 2w;

R(12(2;1); P) = uR(12(2;1); 1)+vR(12(2; 1); 2)+wR(12(2; 1) y) = \/gu+¥v+\/gw;
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R(15(3;2); P) = uR(I5(3;2); 1)+vR(I5(3; 2); 2)+wR(12(3;2);y) = V1Tu+ \/_v+2\/1_7w.

Hence we get a system of equations

3V5 oV 17
2u+2@+2w:fyl,\/gu—i—%—v—l—\/gw:fyz,\/l?u%— 5 v+ 2V 1Tw = ;.

It has the root

= 2’71 5 V2 17 V3, =N 5 72, =M= 5 72 17 ’73
It follows that
AL 25 W5 VT
P(f’fa?/)_éﬁ*l-?%—l—?%*l-( 71+T72)$+(71—T72+ 7 )

Example 4.2. Let A = {a, b, c} be the set of points in the previous example. We will
show that set of three line segments

J ={A(11), J1(2:1), J1(3;2) }
is not regular for P (R?). We have

R(Ji(1;1);1) R(L(1;1);2) R(Ji(1;1)59) 11
R(J(2:1):1) R(A(21)2) R(A(21)59)| = |vV2 22
R(N1(3;2);1) R(L(32);2) R(L(32)y)| |v2 22

Hence, the coefficient matrix is not invertible. Consequently, J is not regular for Py (R?).

Example 4.3. Let A = {a, b, c} be the set of points in Example 4.1. Let us take = 1.
Using Theorem 3.1, we get a regular set for Q,(R?) = spang{1, x,xy} consisting of three
line segments

J =A{(1;1), J1(2;1), J1(3;2)}
Assume that we have the information of a function f given by
ROA(L1); ) =, ROAZ1)5 ) =7, ROAGB2); f) = s
We want to compute the interpolation polynomial
Q(z,y) == R[Q(R?), T; fl(z,y) = u + va + way.

By direct computations, we have

R(J1(1;1);Q) = uR(J1(1;1); 1) + vR(J1(1;1); 2) + wR(Jy(1;1);2y) = u + v + %w;
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R(J1(2;1); Q) = uR(J1(2;1); 1)+vR(J1(2;1); 2)+wR(J1(2;1); zy) = \/_u+3\/_v+£
R(J1(3;2); Q) = uR(1(3:2); 1)+vR(1(3; 2); y) +wR(i(3;2);y) = V2u +£v+%—

Hence, we get a system of equations

1 3 2 ) 7
u+v+§w:’h,\/§u+i—v+T\/—w—%7\/§ +iv+%_w—’y3

Its root can be computed easily,

Vi VB
U—%—FT% 5

Consequently,

3 v= =67 +4V27 — V233, w =127 — 9V27y + 3V27s.

V2 2
Qz,y) =mn+ 5 T (=61 +4V 275 — V273)x + (1271 — 9V 275 + 3V 273)xy
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