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Abstract. We study bivariate polynomial interpolation based on line integrals
over line segments connecting two points on two fixed straight lines in the
plane. We provide a characterization of the sets of segments that uniquely
determine the interpolation polynomial. We also construct illustrative examples
for specific cases.
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1. Introduction
Let Pd(R2) be the vector space of polynomials of degree at most d in R2,

Pd(R2) = spanR{xmyn : 0 ≤ m+ n ≤ d}.

We also consider the space of polynomials

Qd(R2) = spanR{xmyn : 0 ≤ n ≤ m ≤ d}.

The dimensions of Pd(R2) and Qd(R2) are both equal to Nd := (d+ 1)(d+ 2)/2.
A subset A = {x1, . . . ,xNd

} of R2 that consists of Nd distinct points is said to
be unisolvent for Pd(R2) if, for every function f defined on A, there exists a unique
P ∈ Pd(R2) such that f(xk) = P (xk) for k = 1, . . . , Nd. This polynomial is called
the Lagrange interpolation polynomial of f at A and is denoted by L[A; f ]. Unlike
the univariate Lagrange interpolation, the bivariate Lagrange interpolation is not always
unisolvent. Moreover, it is difficult to check whether a particular set of Nd distinct points
in R2 is unisolvent. In the literature, many types of unisolvent sets were constructed
(see [1]-[4])

In some practical problems, we have information about a function coming as a set
of functionals instead of point evaluations. For example, in tomography, the data consists
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of values of line integrals over segments. These values are called Radon projections.
More precisely, let I be a line segment in the plane and f ∈ L1(I). The Radon projection
R(I; f) is the line integral of f over I:

R(I; f) =
∫
I

f(x, y)ds. (1.1)

A fundamental problem in this context is the determination of a polynomial from a finite
set of its Radon projections. Interpolation theorems serve as a basis for the approximate
reconstruction of functions from such projections. Due to the significance of these
reconstruction methods in various applications, they have been the subject of extensive
study by numerous researchers (see [5]-[7])

We now state an interpolation problem based on Radon projections.
Problem 1. Let Fd be the space Pd(R2) or Qd(R2). Determine a set of line segments
I = {Ik : k = 1, . . . , Nd} such that, for arbitrary real numbers γ1, . . . , γNd

, there exists
a unique polynomial P ∈ Fd such that

R(Ik;P ) = γk, k = 1, . . . , Nd.

We say I regular is Fd if it solves the problem.
Let I = {Ik : k = 1, . . . , Nd} be regular for Fd and let f ∈

⋂Nd

k=1 L
1(Ik). Let

R[Fd, I; f ] be the unique polynomial in Fd such that

R
(
Ik;R[Fd, I; f ]

)
= R

(
Ik; f

)
, k = 1, . . . , Nd. (1.2)

The polynomial R[Fd, I; f ] is a type of mean-value interpolation polynomial of f .
A natural approach involves selecting line segments that correspond to chords of

the unit circle and Fd = Pd(R2). In [8], the authors constructed a regular set of chords
partitioned into d+1 groups, with the k-th group consisting of k parallel chords. Bojanov
and Xu in [9] demonstrated that a collection ofNd Radon projections, taken over 2[d/2]+1
parallel chords in each of the 2[(d + 1)/2] + 1 equidistant directions, forms a regular set
provided that certain matrices, determined by the distances from the origin to the chords,
are all non-singular.

A generalization of Problem 1 was studied in [10], where we considered the
interpolation problem in Rn. Here, the interpolation conditions are surface integrals over
the convex hull of the intersection points of a hyperplane with the coordinate axes. We
established a characterization of the hyperplanes such that the interpolation problem has a
unique solution. In particular, for n = 2, the interpolation conditions are the line integrals
over line segments connecting two points on the horizontal and vertical axes. More
precisely, we showed that the set of segments connecting (ai, 0) and (0, bi), with aibi 6= 0,
1 ≤ i ≤ Nd, is regular for Pd(R2) if and only if the set of points {(ai, bi) : 1 ≤ i ≤ Nd}
is unisolvent for Pd(R2).
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In this paper, we are interested in characterizing the regular sets of line segments
where the endpoints lie on two straight lines in R2. We consider two distinct cases:
intersecting lines and parallel lines. Since the case of two perpendicular lines was treated
in [10] (see the above discussion), we only focus on two non-perpendicular lines. Here,
the line segment Ik is determined by two parameters ak and bk, which form a point
(ak, bk) ∈ R2. In case of two intersecting lines, the main result of Section 2 shows
that I is regular for Pd(R2) if and only if A = {(ak, bk) : 1 ≤ k ≤ Nd} is unisolvent for
Pd(R2). Next, we treat the case of parallel lines. We prove in Section 3 that I is regular
for Qd(R2) if and only if A = {(ak, bk) : 1 ≤ k ≤ Nd} is unisolvent for Pd(R2). We
also provide an example in Section 3 showing that the assertion no longer holds when
Qd(R2) is replaced by Pd(R2). Hence, it can be said that the results obtained in this
paper complete the theory of polynomial interpolation based on line integrals joining
two points on two fixed straight lines in the plane. We also establish relations between
the interpolation polynomial induced from I and the Lagrange interpolation polynomial
at A.

Notations and conventions. The set of all nonnegative integers (resp. positive
integers) is denoted by N (resp. Z+). Throughout the paper, we always assume that d is a
positive integer and i, j, k,m, n are natural numbers. We denote by (x)k the Pochhammer
symbol defined by (x)k = x(x+1) · · · (x−k+1) for k ≥ 1 and (x)0 = 1. The monomial
xmyn with m,n ∈ N is denoted by pm,n(x, y).

2. Regular interpolation schemes corresponding to two
intersecting lines
We first consider line segments with endpoints lying on two intersecting lines which

are not perpendicular. Without loss of generality, we may assume that the two lines are
given by y = 0 and y = αx with α 6= 0. Let Iα(a; b) be the line segment joining (a, 0)
and (b, αb) with (a, b) 6= (0, 0) (see Figure 1).

x

y

O ab

αb

y
=
αx

Iα(a; b)

Figure 1. The line segment Iα(a; b)

It is parameterized by x = a+ (b− a)t, y = αbt, 0 ≤ t ≤ 1.
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Lemma 2.1. If pm,n(x, y) = xmyn with m,n ∈ N, then

R(Iα(a; b); pm,n) = αn
√
(b− a)2 + (αb)2

m∑
k=0

(−1)k(m− k + 1)kb
m+n−k(b− a)k

(n+ 1)k+1

,

where (x)k is the Pochhammer symbol.

Proof. Using the above paramaterization of Iα(a; b) we have

R(Iα(a; b); pm,n) =

1∫
0

pm,n
(
a+ (b− a)t, αbt

)√
(b− a)2 + (αb)2dt

=

1∫
0

(
a+ (b− a)t

)m(
αbt
)n√

(b− a)2 + (αb)2dt

= αnbn
√

(b− a)2 + (αb)2

1∫
0

tn
(
a+ (b− a)t

)m
dt.

We need to calculate the last integral. Let us set

u(n,m) =

1∫
0

tn
(
a+ (b− a)t

)m
dt.

The integration by parts enables us to write the following recurrence relation

u(n,m) =
bm

n+ 1
− m(b− a)

n+ 1

1∫
0

tn+1
(
a+ (b− a)t

)m−1
dt

=
bm

n+ 1
− m(b− a)

n+ 1
u(n+ 1,m− 1).

Using the above relation repeatedly we obtain

u(n,m) =
m∑
k=0

(−1)k(m− k + 1)kb
m−k(b− a)k

(n+ 1)k+1

.

Consequently,

R(Iα(a; b); pm,n) = αn
√

(b− a)2 + (αb)2
m∑
k=0

(−1)k(m− k + 1)kb
m+n−k(b− a)k

(n+ 1)k+1

.

The proof is completed.
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Lemma 2.2. Let d be a positive integer. Then the set of homogeneous polynomials{ m∑
k=0

(−1)k(m− k + 1)ky
d−k(y − x)k

(d−m+ 1)k+1

: 0 ≤ m ≤ d
}

(2.1)

forms a basis forHd(R2), the space of homogeneous polynomials of degree d in R2.

Proof. We see that the set {yd−k(y − x)k : 0 ≤ k ≤ d} forms a basis for Hd(R2).
The desired assertion follows directly from the fact that the matrix of coefficients
corresponding to the set of polynomials in (2.1) and the above basis has non-zero
determinant,

1

d+ 1
0 0 0 · · · 0

1

d

−1
d(d+ 1)

0 0 · · · 0

1

d− 1

2

(d− 1)d

1 · 2
(d− 1)d(d+ 1)

0 · · · 0

...
...

...
... . . . ...

1

1

−d
2!

(d− 1)d

3!

−(d− 2)(d− 1)d

4!
· · · (−1)dd!

(d+ 1)!


.

The proof is completed.

Utilizing the above lemma, we immediately obtain the following result.

Lemma 2.3. Let d be a positive integer. Then, the set of bivariate polynomials{
qm,n(x, y) :=

m∑
k=0

(−1)k(m− k + 1)ky
m+n−k(y − x)k

(n+ 1)k+1

: m+ n ≤ d
}

forms a basis for Pd(R2).

Theorem 2.1. Let α 6= 0. Then the set of segments I = {Iα(ai; bi) : (ai, bi) 6= (0, 0), 1 ≤
i ≤ Nd} is regular for Pd(R2) if and only if the set of points A = {(ai, bi) : 1 ≤ i ≤ Nd}
is unisolvent for Pd(R2).

Proof. Using Lemma 2.1 we get

R(Iα(a; b); pm,n) = αn
√

(b− a)2 + (αb)2qm,n(a, b). (2.2)

We first assume that A is unisolvent for Pd(R2). Let P ∈ Pd(R2) such that

R(Iα(ai; bi);P ) = 0, ∀1 ≤ i ≤ Nd. (2.3)
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We need to show that P = 0. We write P (x, y) =
∑

m+n≤d cm,npm,n(x, y). From (2.2)
we can write

R(Iα(ai; bi);P ) =
√

(bi − ai)2 + (αbi)2
∑

m+n≤d

αncm,nqm,n(ai, bi).

We define P̃ (x, y) =
∑

m+n≤d α
ncm,nqm,n(x, y). Then P̃ ∈ Pd(R2) and

R(Iα(ai; bi);P ) =
√

(bi − ai)2 + (αbi)2P̃ (ai, bi), 1 ≤ i ≤ Nd. (2.4)

Combining (2.3) and (2.4) we obtain P̃ (ai, bi) = 0 for 1 ≤ i ≤ Nd. The hypothesis that
A is unisolvent gives P̃ = 0. Since {qm,n : m + n ≤ d} is a basis for Pd(R2), we have
cm,n = 0 for m+ n ≤ d. Hence P = 0.

Conversely, assume that I is regular. Let Q ∈ Pd(R2) such that Q(ai, bi) = 0 for
1 ≤ i ≤ Nd. We write Q =

∑
m+n≤d dm,nqm,n and define Q̂ =

∑
m+n≤d

dm,n

αn pm,n. By the
above arguments we get

R(Iα(ai; bi); Q̂) =
√
(bi − ai)2 + (αbi)2Q(ai, bi), 1 ≤ i ≤ Nd.

Hence R(Iα(ai; bi); Q̂) = 0, 1 ≤ i ≤ Nd. Consequently, Q̂ = 0, because I is regular
for Pd(R2). This forces dm,n = 0 for m + n ≤ d, and hence Q = 0. The proof is
completed.

Proposition 2.1. Let α 6= 0. Let I = {Iα(ai; bi) : (ai, bi) 6= (0, 0), 1 ≤ i ≤ Nd} be
regular for Pd(R2) and A = {(ai, bi) : 1 ≤ i ≤ Nd}. Let f ∈

⋂Nd

i=1 L
1(Iα(ai; bi)) and

f ? : A→ R define by

f ?(ai, bi) =
R
(
Iα(ai; bi); f

)√
(bi − ai)2 + (αbi)2

, 1 ≤ i ≤ Nd.

Let R[Pd(R2), I; f ] =
∑

m+n≤d
cm,npm,n and L[A; f ?] =

∑
m+n≤d

c?m,nqm,n.

Then c?m,n = αncm,n for m+ n ≤ d.

Proof. Lemma 2.1 gives

R
(
Iα(ai; bi); f

)
= R

(
Iα(ai; bi);R[Pd(R2), I; f ]

)
=
∑

m+n≤d

cm,nR
(
Iα(ai; bi); pm,n

)
=

√
(bi − ai)2 + (αbi)2

∑
m+n≤d

αncm,nqm,n(ai, bi).

It follows that ∑
m+n≤d

αncm,nqm,n(ai, bi) = f ?(ai, bi), 1 ≤ i ≤ Nd, (2.5)
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The polynomial
∑

m+n≤d α
ncm,nqm,n belonging the space Pd(R2) interpolates f ? at A.

By the uniqueness of Lagrange interpolation, we have

L[A; f ?] =
∑

m+n≤d

αncm,nqm,n.

The desired relation follows directly from the last equality. The proof is completed.

3. Regular interpolation schemes corresponding to two parallel
lines
We now consider line segments with endpoints located on two parallel lines. There

is no loss of generality in assuming the two lines are y = 0 and y = β where β 6= 0. Let
Jβ(a; b) denote the line segment connecting the points (a, 0) and (b, β) (see Figure 2).

x

y

O ab

β y = β

Jβ(a; b)

Figure 2. The line segment Jβ(a; b)

This segment can be parameterized by x = a+ (b− a)t, y = βt, 0 ≤ t ≤ 1.

Lemma 3.1. If pm,n(x, y) = xmyn with m,n ∈ N, then

R(Jβ(a; b); pm,n) = βn
√

(b− a)2 + β2

m∑
k=0

(−1)k(m− k + 1)kb
m−k(b− a)k

(n+ 1)k+1

,

where (x)k is the Pochhammer symbol.

Proof. We can write

R(Jα(a; b); pm,n) =

1∫
0

pm,n
(
a+ (b− a)t, βt

)√
(b− a)2 + β2dt

=

1∫
0

(
a+ (b− a)t

)m(
βt
)n√

(b− a)2 + β2dt

= βn
√

(b− a)2 + β2

1∫
0

tn
(
a+ (b− a)t

)m
dt.
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Using the computation of the integral
1∫
0

tn
(
a+(b− a)t

)m
dt in Lemma 2.1, we obtain the

desired relation.

Lemma 3.2. Let m be a positive integer. Then the set of homogeneous polynomials{ m∑
k=0

(−1)k(m− k + 1)ky
m−k(y − x)k

(n+ 1)k+1

: 0 ≤ n ≤ m
}

(3.1)

forms a basis forHm(R2), the space of homogeneous polynomials of degree m in R2.

Proof. As in the proof of Lemma 2.2, since{ym−k(y − x)k : 0 ≤ k ≤ m} is a basis
for Hm(R2), it suffices to show that the matrix of coefficients corresponding to the set of
polynomials in (3.1) and the above basis is invertible

M =



1
1

−m
1·2

(m−1)m
1·2·3 · · · (−1)m1·2···m

1·2···(m+1)
1
2

−m
2·3

(m−1)m
2·3·4 · · · (−1)m1·2···m

2·3···(m+2)
1
3

−m
3·4

(m−1)m
3·4·5 · · · (−1)m1·2···m

3·4···(m+3)
...

...
... . . . ...

1
m+1

−m
(m+1)(m+2)

(m−1)m
(m+1)(m+2)(m+3)

· · · (−1)m1·2···m
(m+1)(m+2)···(2m+1)

 .

It is easily check that detM = (−1)
m(m+1)

2

∏m
k=0(m− k + 1)k

∏m
k=1 k! detH, where

H :=



1
1!

1
2!

1
3!

· · · 1
(m+1)!

1
2!

1
3!

1
4!

· · · 1
(m+2)!

1
3!

1
4!

1
5!

· · · 1
(m+3)!

...
...

... . . . ...
1

(m+1)!
1

(m+2)!
1

(m+3)!
· · · 1

(2m+1)!

 .

We see that H is a Hankel matrix. The determinant of this matrix can be found in the
literature. To make it easier for readers to follow, we give a detailed computation. For
each 1 ≤ j ≤ m+ 1, we factor out 1

(m+j)!
from the j-th column and get

detH =
1∏m+1

j=1 (m+ j)!
det
[ (m+ j)!

(k + j − 1)!

]m+1

k,j=1
.

Note that (m+j)!
(k+j−1)! = fm+1−k(m + j), where fk(x) = x(x− 1) · · · (x− k + 1) for k ≥ 1

and f0(x) = 1. Hence

detH =
1∏m+1

j=1 (m+ j)!
det
[
fm+1−k(m+ j)

]m+1

k,j=1

=
(−1)

m(m+1)
2∏m+1

j=1 (m+ j)!
det
[
fk−1(m+ j)

]m+1

k,j=1
.
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We will reduce the last determinant to the Vandermonde determinant. Indeed, for any set
{x1, . . . , xm+1} of m + 1 real numbers, since fk(x) is a monic polynomial of degree k,
we can use the row operation of matrix to obtain

det
[
fk−1(xj)

]m+1

k,j=1
= det

[
gk−1(xj)

]m+1

k,j=1
=

∏
1≤k<j≤m+1

(xj − xk),

where gk(x) = xk for k = 0, . . . ,m. It follows that

det
[
fk−1(m+ j)

]m+1

k,j=1
=

∏
1≤k<j≤m+1

[(m+ j)− (m+ k)] =
∏

1≤k<j≤m+1

(j − k) =
m∏
i=1

i!.

Hence detH =
(−1)

m(m+1)
2

∏m
i=1 i!∏m+1

j=1 (m+j)!
. Combining the above computations, we obtain

detM =
∏m

k=0(m−k+1)k
∏m

i=1(i!)
2∏m+1

j=1 (m+j)!
. Consequently, M is invertible, and the proof is

completed.

Applying the above lemma, we get the following result.

Lemma 3.3. Let d be a positive integer. Then the set of polynomials{
rm,n(x, y) :=

m∑
k=0

(−1)k(m− k + 1)ky
m−k(y − x)k

(n+ 1)k+1

: 0 ≤ n ≤ m ≤ d
}

(3.2)

forms a basis for Pd(R2).

Using similar arguments presented in the proof of Theorem 2.1 and Proposition 2.1,
we get the following results.

Theorem 3.1. Let β 6= 0. Then the set of segments J = {Jβ(ai; bi) : 1 ≤ i ≤ Nd}
is regular for Qd(R2) if and only if the set of points A = {(ai, bi) : 1 ≤ i ≤ Nd} is
unisolvent for Pd(R2).

Proof. In view of Lemma 3.1 we have

R(Jβ(a; b); pm,n) = βn
√

(b− a)2 + β2rm,n(a, b). (3.3)

We first assume that A is unisolvent for Pd(R2). Let P ∈ Qd(R2) satisfying the condition

R(Jα(ai; bi);P ) = 0, 1 ≤ i ≤ Nd. (3.4)

We need to show that P = 0. Wring P (x, y) =
∑

0≤n≤m≤d cm,npm,n(x, y) and using (3.3)
we can write

R(Jβ(ai; bi);P ) =
√

(bi − ai)2 + β2
∑

0≤n≤m≤d

βncm,nrm,n(ai, bi).
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Let us set P̃ (x, y) =
∑

0≤n≤m≤d β
ncm,nrm,n(x, y). Observe that P̃ ∈ Pd(R2) and

R(Jβ(ai; bi);P ) =
√

(bi − ai)2 + β2P̃ (ai, bi), 1 ≤ i ≤ Nd. (3.5)

Combining (3.4) and (3.5) we obtain P̃ (ai, bi) = 0 for 1 ≤ i ≤ Nd. Since A is unisolvent
for Pd(R2), we get P̃ = 0. It follows that cm,n = 0 for 0 ≤ n ≤ m ≤ d because
{rm,n : 0 ≤ n ≤ m ≤ d} is a basis for Pd(R2). This forces P = 0.

Conversely, assume that J is regular for Qd(R2). Let Q ∈ Pd(R2) such that
Q(ai, bi) = 0, 1 ≤ i ≤ Nd. Since the set {rm,n : 0 ≤ n ≤ m ≤ d} form a basis for
Pd(R2), we can write Q =

∑
0≤n≤m≤d dm,nrm,n. Let us define Q̂ =

∑
0≤n≤m≤d

dm,n

βn pm,n.

We have Q̂ ∈ Qn. By the above arguments, we get

R(Jβ(ai; bi); Q̂) =
√

(bi − ai)2 + β2Q(ai, bi), 1 ≤ i ≤ Nd.

It follows that R(Jβ(ai; bi); Q̂) = 0, 1 ≤ i ≤ Nd. Consequently, Q̂ = 0, because J is
regular for Qd(R2). Hence, dm,n = 0 for 0 ≤ n ≤ m ≤ d. This forces Q = 0, and the
proof is completed.

Proposition 3.1. Let β 6= 0. Let J = {Jβ(ai; bi) : 1 ≤ i ≤ Nd} be regular for Qd(R2)

and A = {(ai, bi) : 1 ≤ i ≤ Nd}. Let f ∈
⋂Nd

i=1 L
1(Jβ(ai; bi)) and f ∗ : A→ R define by

f ∗(ai, bi) =
R
(
Jβ(ai; bi); f

)√
(bi − ai)2 + β2

, 1 ≤ i ≤ Nd.

Let R[Qd(R2),J ; f ] =
∑

0≤n≤m≤d
cm,npm,n and L[A; f ∗] =

∑
0≤n≤m≤d

c∗m,nrm,n.

Then c∗m,n = βncm,n for 0 ≤ n ≤ m ≤ d.

Proof. From Lemma 3.1 we can write

R
(
Jβ(ai; bi); f

)
= R

(
Jβ(ai; bi);R[Qd(R2),J ; f ]

)
=

∑
0≤n≤m≤d

cm,nR
(
Jβ(ai; bi); pm,n

)
=

√
(bi − ai)2 + β2

∑
0≤n≤m≤d

βncm,nrm,n(ai, bi).

It follows that ∑
0≤n≤m≤d

βncm,nrm,n(ai, bi) = f ∗(ai, bi), 1 ≤ i ≤ Nd, (3.6)

Observe that
∑

0≤n≤m≤d β
ncm,nrm,n is a polynomial of degree at most d in R2. Relation

(3.6) induces that this polynomial interpolates f ∗ at A. By the uniqueness of Lagrange
interpolation, we have

L[A; f ∗] =
∑

0≤n≤m≤d

βncm,nrm,n.

Since {rm,n : 0 ≤ n ≤ m ≤ d} forms a basis for Pd(R2), we get c∗m,n = βncm,n for
0 ≤ n ≤ m ≤ d.
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Remark 3.1. The space of polynomial Qd(Rd) arises naturally from Lemma 3.1.
Therefore, it is reasonable to work with Qd(Rd) instead of Pd(Rd). The problem of
characterizing the regularity of J corresponding to Pd(Rd) remains open.

4. Examples
In this section, we compute the interpolation polynomials constructed in the two

preceding sections. While Propositions 2.1 and 3.1 provide explicit formulas for these
polynomials, our examples focus on the case d = 1, which allows for direct computation.

Example 4.1. We consider three non-collinear points a = (1, 1), b = (2, 1) and c =
(3, 2) in the plane. It is well-known that A = {a,b, c} is unisolvent for P1(R2). Let us
take α = 2. By Theorem 2.1, the set of three line segments

I = {I2(1; 1), I2(2; 1), I2(3; 2)}

is regular for P1(R2).

x

y

O 1 2 3

2

4

y
=
2x

I 2
(1
;1
)

I
2 (2; 1)

I2(3; 2)

x

y

O 21 3

1 y = 1

J
1
(1
;1
) J

1 (2; 1)

J
1 (3; 2)

Figure 3. Three line segments in I (left) and J (right)

Assume that we have the information of a function f given by

R(I2(1; 1); f) = γ1, R(I2(2; 1); f) = γ2, R(I2(3; 2); f) = γ3.

We need to compute the interpolation polynomial

P (x, y) := R[P1(R2), I; f ](x, y) = u+ vx+ wy.

Direct computation gives

R(I2(1; 1);P ) = uR(I2(1; 1); 1) + vR(I2(1; 1);x) + wR(I2(1; 1); y) = 2u+ 2v + 2w;

R(I2(2; 1);P ) = uR(I2(2; 1); 1)+vR(I2(2; 1);x)+wR(I2(2; 1); y) =
√
5u+

3
√
5

2
v+
√
5w;
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R(I2(3; 2);P ) = uR(I2(3; 2); 1)+vR(I2(3; 2);x)+wR(I2(3; 2); y) =
√
17u+

5
√
17

2
v+2
√
17w.

Hence we get a system of equations

2u+ 2v + 2w = γ1,
√
5u+

3
√
5

2
v +
√
5w = γ2,

√
17u+

5
√
17

2
v + 2

√
17w = γ3.

It has the root

u =
1

2
γ1 +

√
5

5
γ2 −

√
17

17
γ3, v = −γ1 +

2
√
5

5
γ2, w = γ1 −

3
√
5

5
γ2 +

√
17

17
γ3.

It follows that

P (x, y) =
1

2
γ1 +

√
5

5
γ2 −

√
17

17
γ3 +

(
− γ1 +

2
√
5

5
γ2
)
x+

(
γ1 −

3
√
5

5
γ2 +

√
17

17

)
y.

Example 4.2. Let A = {a,b, c} be the set of points in the previous example. We will
show that set of three line segments

J = {J1(1; 1), J1(2; 1), J1(3; 2)}

is not regular for P1(R2). We have∣∣∣∣∣∣
R(J1(1; 1); 1) R(J1(1; 1);x) R(J1(1; 1); y)
R(J1(2; 1); 1) R(J1(2; 1);x) R(J1(2; 1); y)
R(J1(3; 2); 1) R(J1(3; 2);x) R(J1(3; 2); y)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 1 1

2√
2 3

√
2

2

√
2
2√

2 5
√
2

2

√
2
2

∣∣∣∣∣∣ = 0.

Hence, the coefficient matrix is not invertible. Consequently, J is not regular for P1(R2).

Example 4.3. Let A = {a,b, c} be the set of points in Example 4.1. Let us take β = 1.
Using Theorem 3.1, we get a regular set forQ1(R2) = spanR{1, x, xy} consisting of three
line segments

J = {J1(1; 1), J1(2; 1), J1(3; 2)}

Assume that we have the information of a function f given by

R(J1(1; 1); f) = γ1, R(J1(2; 1); f) = γ2, R(J1(3; 2); f) = γ3.

We want to compute the interpolation polynomial

Q(x, y) := R[Q1(R2),J ; f ](x, y) = u+ vx+ wxy.

By direct computations, we have

R(J1(1; 1);Q) = uR(J1(1; 1); 1) + vR(J1(1; 1);x) + wR(J1(1; 1);xy) = u+ v +
1

2
w;
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R(J1(2; 1);Q) = uR(J1(2; 1); 1)+vR(J1(2; 1);x)+wR(J1(2; 1);xy) =
√
2u+

3
√
2

2
v+

2
√
2

3
w;

R(J1(3; 2);Q) = uR(J1(3; 2); 1)+vR(J1(3; 2);xy)+wR(J1(3; 2); y) =
√
2u+

5
√
2

2
v+

7
√
2

6
w.

Hence, we get a system of equations

u+ v +
1

2
w = γ1,

√
2u+

3
√
2

2
v +

2
√
2

3
w = γ2,

√
2u+

5
√
2

2
v +

7
√
2

6
w = γ3.

Its root can be computed easily,

u = γ1+

√
2

2
γ2−

√
2

2
γ3, v = −6γ1+4

√
2γ2−

√
2γ3, w = 12γ1− 9

√
2γ2+3

√
2γ3.

Consequently,

Q(x, y) = γ1+

√
2

2
γ2−
√
2

2
γ3+(−6γ1+4

√
2γ2−

√
2γ3)x+(12γ1−9

√
2γ2+3

√
2γ3)xy.
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